×

A time-filtering method for plasma simulation: high bulk conductivity. (English) Zbl 1481.76294

Summary: In this paper we aim to make possible the simulation of plasma - solid interaction in real insulating components using a set of first-principle partial differential equations. The high ratio between the conductivities of the many materials present in electrical components causes the associated numerical problem to become very stiff and this curtails the maximum allowed time step increase.
To simulate some realistic components using sufficiently large time steps a filtering method is applied. A novel theoretical analysis has been developed showing that the filter allows the use of larger time steps without affecting the accuracy of the method. This analysis is backed by the results of a significant numerical experiment.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
82D10 Statistical mechanics of plasmas
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Villa, A.; Barbieri, L.; Gondola, M.; Leon-Garzon, A. R.; Malgesini, R., An efficient algorithm for corona simulation with complex chemical models, J. Comput. Phys., 337, 233-251 (2017) · Zbl 1415.76481
[2] Tran, T. N.; Golosnoy, I. O.; Georghiou, P. L.L. G.E., Numerical modelling of negative discharges in air with experimental validation, J. Phys. D Appl. Phys., 44, 1, 015203 (2011)
[3] Kang, W. S.; Park, J. M.; Kim, Y.; Houng, S. H., Numerical study on the influence of barrier arrangements of dielectric barrier discharge characteristics, IEEE T. Plasma Sci., 31, 4, 504-510 (2003)
[4] Serdyuk, Y.; Gubanski, S., Computer modeling of interaction of gas discharge plasma with solid dielectric barriers, IEEE Trans. Dielectr. Electr. Insul., 12, 4, 725-735 (2005)
[5] McAllister, I. W., Partial discharges in spheroidal voids. void orientation, IEEE Trans. Dielectr. Electr. Insul., 4, 5, 456-461 (1997)
[6] Rowland, S.; Schurch, R.; Pattouras, M.; Li, Q., Application of FEA to image-based models of electrical trees with uniform conductivity, IEEE Trans. Dielectr. Electr. Insul., 22, 3, 1537-1546 (2015)
[7] Rodriguez-Serna, J. M.; Albarracin-Sanchez, R., Numerical simulation of temperature and pressure changes due to partial discharges in spherical cavities within solid dielectrics at different ageing conditions, Energies, 12, 4771, 1-11 (2019)
[8] Callender, G.; Golosnoy, I.; Lewin, P. L.; Rapisarda, P., Critical analysis of partial discharge dynamics in air filled spherical voids, J. Phys. D Appl. Phys., 51, 12, 125601 (2018)
[9] Callender, G.; Tanmaneeprasert, T.; Lewin, P. L., Simulating partial discharge activity in a cylindrical void using a model of plasma dynamics, J. Phys. D Appl. Phys., 52, 5, 055206 (2019)
[10] Villa, A.; Barbieri, L.; Gondola, M.; Leon-Garzon, A. R.; Malgesini, R., A PDE-based partial discharge simulator, J. Comput. Phys., 345, 687-705 (2017) · Zbl 1378.78012
[11] Fabiani, D.; Montanari, G. C.; Laurent, C.; Teyssedre, G.; Morshuis, P. H.F.; Bodega, R.; Dissado, L. A., HVDC Cable design and space charge accumulation. part 3: effect of temperature gradient, IEEE Electr. Insul. Mag., 24, 2, 5-14 (2008)
[12] Cordier, F.; Degond, P.; Kumbaro, A., An asymptotic-preserving all-speed scheme for the euler and navier stokes equations, J. Comput. Phys., 231, 17, 5685-5704 (2012) · Zbl 1277.76090
[13] Degond, P.; Deluzet, F.; Doyen, D., Asymptotic-preserving particle-in-cell methods for the vlasov-maxwell system near quasi-neutrality, J. Comput. Phys., 330, 1, 467-492 (2017) · Zbl 1378.76091
[14] Schtz, J., An asymptotic preserving method for linear systems of balance laws based on galerkins method, J. Sci. Comput., 60, 2, 438-456 (2014) · Zbl 1310.65129
[15] Browning, G. L.; Kreiss, H. O., Analysis of periodic updating for systems with multiple timescales, J. Atmos. Sci., 53, 2, 335-348 (1996)
[16] Peddle, A. G., Components of nonlinear oscillation and optimal averaging for stiff PDEs (2018), University of Exeter, Ph.D. thesis
[17] Sandu, A.; Verwer, J. G.; van Loon, M.; Carmichael, G. R.; Potra, F. A.; Dabdub, D.; Seinfeld, J. H., Benchmarking stiff ODE solvers for atmospheric chemistry problems i: implicit versus explicit, Atmos. Environ., 31, 19, 3151-3166 (1997)
[18] Sandu, A., Benchmarking stiff ODE solvers for atmospheric chemistry problems II: rosenbrock solvers, Atmos. Environ., 31, 20, 3459-3472 (1997)
[19] Bartello, P., A comparison of time discretization schemes for two-timescale problems in geophysical fluid dynamics, J. Comput. Phys., 179, 1, 268-285 (2002) · Zbl 1059.76051
[20] Cordier, F.; Degond, P.; Kumbaro, A., An asymptotic-preserving all-speed scheme for the euler and navier stokes equations, J. Comput. Phys., 231, 17, 5685-5704 (2012) · Zbl 1277.76090
[21] Noelle, S.; Bispen, G.; Arun, K. R.; Lukacova-Medvidova, M.; Munz, C. D., A weakly asymptotic preserving low mach number scheme for the euler equations of gas dynamics, Computational Methods in Science and Engineering, 36, 6, 989-1024 (2012) · Zbl 1321.76053
[22] Imren, A.; Haworth, D. C., On the merits of extrapolation-based stiff ODE solvers for combustion CFD, Combust. Flame, 174, 1-15 (2016)
[23] Weiqi, S.; Yiguang, J., A multi-timescale and correlated dynamic adaptive chemistry and transport (CO-DACT) method for computationally efficient modeling of jet fuel combustion with detailed chemistry and transport, Combust. Flame, 184, 297-311 (2017)
[24] Dubois, T.; Jauberteau, F.; Temam, R. M.; Tribbia, J., Multilevel schemes for the shallow water equations, J. Comput. Phys., 207, 2, 660-694 (2005) · Zbl 1213.76132
[25] Nadiga, B. T.; Hecht, M. W.; Margolin, L. G.; Smolarkiewicz, P. K., On simulating flows with multiple time scales using a method of averages, Theor. Comput. Fluid Dyn., 9, 3-4, 281-292 (1997) · Zbl 0907.76052
[26] Lin, B.; Zhuang, C.; Cai, Z.; Zeng, R.; Bao, W., An efficient and accurate MPI based parallel simulator for streamer discharges in three dimensions, arXiv (2018)
[27] Vlase, S.; Marin, M.; Ochsner, A., Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system, Continuum Mech. Thermodyn., 31, 715-724 (2019) · Zbl 1442.70006
[28] Groza, G.; Jianu, M.; Pop, N., Infinitely differentiable functions represented into newton interpolating series, Carpathian Journal of Mathematics, 30, 3, 309-316 (2014) · Zbl 1349.41051
[29] Abd-Elaziz, E. M.; Marin, M.; Othman, M. I.A., On the effect of thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory, Symmetry (Basel), 11, 3, 413 (2019) · Zbl 1425.74170
[30] Arain, M. B.; Bhatti, M. M.; Zeeshan, A.; Saeed, T.; Hobiny, A., Analysis of arrhenius kinetics on multiphase flow between a pair of rotating circular plates, Mathematical Problems in Engineering, 2020, 2749105 (2020) · Zbl 1459.76174
[31] Shampine, L. F.; Reichelt, M. W., The MATLAB ODE suite, SIAM Journal on Scientific Computing, 18, 1, 1-22 (1997) · Zbl 0868.65040
[32] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical mathematics (2007), Springer · Zbl 0913.65002
[33] Gragg, W. B., On extrapolation algorithms for ordinary initial value problems, Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 2, 3, 384-403 (1965) · Zbl 0135.37803
[34] Mattheij, R. M.M., On computing smooth solutions of problems with large lipschitz constants, Appl. Numer. Math., 2, 2, 119-134 (1986) · Zbl 0599.65050
[35] Byrne, G. D., Stiff ODE solvers: a review of corning attractions, J. Comput. Phys., 70, 1, 1-62 (1987) · Zbl 0614.65078
[36] Lindberg, B., On smoothing and extrapolation for the trapezoidal rule, BIT Numerical Mathematics, 11, 1, 29-52 (1971) · Zbl 0221.65134
[37] Kreiss, H.-O., Problems with different time scales for ordinary differential equations, SIAM J. Numer. Anal., 16, 6, 980-998 (1979) · Zbl 0457.65057
[38] Scheid, R. E., Difference methods for problems with different time scales, Math. Comput., 44, 81-92 (1985) · Zbl 0572.65058
[39] Browning, G. L.; Kreiss, H.-O., Splitting methods for problems with different timescales, Mon. Weather Rev., 122, 11, 2614-2622 (1994)
[40] Sportisse, B., An analysis of operator splitting techniques in the stiff case, J. Comput. Phys., 161, 1, 140-168 (2000) · Zbl 0953.65062
[41] Corliss, G. F.; Griewank, A.; Henneberger, P.; Kirlinger, G.; Potra, F. A.; Stetter, H. J., High-order Stiff ODE Solvers via Automatic Differentiation and Rational Prediction, (Goos, G.; Hartmanis, J.; Leeuwen, J.; Vulkov, L.; Waniewski, J.; Yalamov, P., Numerical Analysis and Its Applications, volume 1196 (1997), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 114-125
[42] Enright, W. H.; Hull, T. E.; Lindberg, B., Comparing numerical methods for stiff systems of ODEs, BIT Numerical Mathematics, 15, 1, 10-48 (1975) · Zbl 0301.65040
[43] Alexander, R., The modified newton method in the solution of stiff ordinary differential equations, Math. Comput., 57, 196, 673-701 (1991) · Zbl 0734.65060
[44] Gustafsson, K.; Soderlind, G., Control strategies for the iterative solution of nonlinear equations in ODE solvers, SIAM Journal on Scientific Computing, 18, 1, 23-40 (1997) · Zbl 0867.65035
[45] Eriksson, K.; Johnson, C.; Logg, A., Explicit time-stepping for stiff ODEs, SIAM Journal on Scientific Computing, 25, 4, 1142-1157 (2004) · Zbl 1061.65059
[46] Ariel, G.; Engquist, B.; Tsai, R., A multiscale method for highly oscillatory ordinary differential equations with resonance, Math. Comput., 78, 266, 929-956 (2008) · Zbl 1198.65110
[47] Engquist, B.; Tsai, Y.-H., Heterogeneous multiscale methods for stiff ordinary differential equations, Math. Comput., 74, 252, 1707-1743 (2005) · Zbl 1081.65075
[48] Majda, G., Filtering techniques for systems of stiff ordinary differential equations i, SIAM J. Numer. Anal., 21, 3, 535-566 (1984) · Zbl 0543.65050
[49] Majda, G., Filtering techniques for systems of stiff ordinary differential equations II. error estimates, SIAM J. Numer. Anal., 22, 6, 1116-1134 (1985) · Zbl 0589.65061
[50] Villa, A.; Barbieri, L.; Gondola, M.; Leon-Garzon, A. R.; Malgesini, R., Simulation of the AC corona phenomenon with experimental validation, J. Phys. D: Appl. Phys., 50, 435201 (2017)
[51] Villa, A.; Barbieri, L.; Gondola, M.; Malgesini, R., An symptotic preserving scheme fo the streamer simulation, J. Comput. Phys., 242, 1, 86-102 (2013) · Zbl 1311.76151
[52] Villa, A.; Barbieri, L.; Gondola, M.; Leon-Garzon, A. R.; Malgesini, R., An implicit three-dimensional fractional step method for the simulation of the corona phenomenon, Appl. Math. Comput., 311, 85-99 (2017) · Zbl 1426.85003
[53] Duran-Olivencia, F. J.; Pontiga, F.; Castellanos, A., Multi-species simulation of trichel pulses in oxygen, J. Phys. D Appl. Phys., 47, 41, 415203 (2014)
[54] Tian, W.; Tachibana, K.; Kushner, M. J., Plasmas sustained in bubbles in water: optical emission and excitation mechanisms, J. Phys. D Appl. Phys., 47, 5, 055202 (2014)
[55] Sharma, A.; Levko, D.; Raja, L. L.; Cha, M. S., Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions, Journal of Physics D Applied Physics, 49, 39, 395205, (2016)
[56] LeVeque, R. J., Finite volume methods for hyperbolic problems (2002), Cambridge textx in applied mathematics · Zbl 1010.65040
[57] Arnold, D. N.; Brezzi, F., Mixed and nonconforming finite element methods: implementation, postrocessing and error estimates, Math. Modeling and Numer. Anal., 19, 1, 7-32 (1985) · Zbl 0567.65078
[58] Causin, P.; Sacco, R., A dual-mixed hybrid formulation for fluid mechanics problems: mathematical analysis and application to semiconductor process technology, Comput. Methods Appl. Mech. Eng., 192, 5, 593-612 (2003) · Zbl 1026.74068
[59] Farhloul, M.; Fortin, M., A new mixed finite element for the stokes and elasticity problems, SIAM J. Numer. Anal., 30, 4, 971-990 (1993) · Zbl 0777.76051
[60] Causin, P.; Sacco, R., A discontinuous petrov-Galerkin method with lagrangian multipliers for second order elliptic problems, SIAM J. Numer. Anal., 43, 1, 280-302 (2005) · Zbl 1087.65105
[61] Brezzi, F.; Fortin, M., Mixed and hibrid finite elements methods (1991) · Zbl 0788.73002
[62] Villa, A.; Barbieri, L.; Malgesini, R., Three dimensional simulation of the dynamics of electro active polymers using shell elements, Applied Mathematics Computation, 377, 125160 (2020) · Zbl 1474.65366
[63] A. Villa, Morgana (https://github.com/feof81/morganaPublic), 2020, (????).
[64] Villa, A.; Barbieri, L.; Malgesini, R.; Leon-Garzon, A. R., Ingition of discharges in macroscopic isolated voids and first electron availability, J. Appl. Phys., 125, 043302 (2019)
[65] Dolce, S.; Fioruccia, E.; Buccia, G.; D’Innocenzo, F.; Ciancetta, F.; Pasquale, A. D., Test instrument for the automatic compliance check of cast resin insulated windings for power transformers, Measurement, 100, 50-61 (2017)
[66] Xidong, L.; Shaowu, W.; Ju, F.; Zhicheng, G., Development of composite insulators in china, IEEE Trans. Dielectr. Electr. Insul., 6, 5, 586-594 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.