×

Convergence analysis of the higher-order global mass-preserving numerical method for the symmetric regularized long-wave equation. (English) Zbl 1480.65210

Summary: A higher-order uncoupled finite difference scheme is proposed and analysed to approximate the solutions of the symmetric regularized long-wave equation. The finite difference technique preserving the global conservation laws precisely on any time-space regions gives a three-level linear-implicit scheme with a tridiagonal system. The existence and uniqueness of numerical solutions are guaranteed while the convergence and stability are verified. In addition, the error estimation in \(\|\cdot\|_\infty\)-norm for the proposed scheme is examined, and the spatial accuracy is analysed and found to be fourth order on a uniform grid. The scheme is also proved to conserve mass and bound of solutions. Some numerical tests are presented to illustrate the theoretical results and the efficiency of the scheme. The consequences confirm that the proposed scheme gives an improvement over existing schemes. Moreover, in the numerical simulations, the faithfulness of the proposed method is validated by the evidences of an overtaking collision between two elevation solitary waves and a head-on collision between elevation as well as depression solitary waves under the effect of variable parameters.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aslan, I., Exact and explicit solutions to nonlinear evolution equations using the division theorem, Appl. Math. Comput., 217, 8134-8139 (2011) · Zbl 1219.35032
[2] Bahadir, A. R., Exponential finite-difference method applied to Korteweg-de Vries equation for small times, Appl. Math. Comput., 160, 675-682 (2005) · Zbl 1062.65087
[3] Bashir, M. A.; Moussa, A. A., New approach of \(####\) expansion method. Applications to KdV equation, J. Math. Res., 6 (2014)
[4] Bhardwaj, D.; Shankar, R., A computational method for regularized long wave equation, Comput. Math. Appl., 40, 1397-1404 (2000) · Zbl 0965.65108
[5] Bona, J. L.; Pritchard, W. G.; Scott, L. R., Numerical schemes for a model for nonlinear dispersive waves, J. Comput. Phys., 60, 167-186 (1985) · Zbl 0578.65120
[6] Boyd, J. P., The nonlinear equatorial Kelvin wave, J. Phys. Ocean., 10, 1-11 (1980)
[7] Chousurin, R.; Mouktonglang, T.; Wongsaijai, B., Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation, Numer. Algorithms (2020) · Zbl 1465.65068 · doi:10.1007/s11075-019-00825-4
[8] Chunga, K.; Toulkeridis, T., First evidence of paleo-tsunami deposits of a major historic event in Ecuador, J. Tsunami Soc. Int., 33, 55-69 (2014)
[9] Clarkson, P. A., New similarity reductions and Painleve analysis for the symmetric regularized long wave and modified Benjamin-Bona-Mahoney equations, J. Phys. A Math. General., 22, 3821-3848 (1989) · Zbl 0711.35113
[10] Cui, Y.; Mao, D-k., Numerical method satisfying the first two conservation laws for the Korteweg-de Vries equation, J. Comput. Phys., 227, 376-399 (2007) · Zbl 1131.65073
[11] Dogan, A., Numerical solution of regularized long wave equation using Petrov-Galerkin method, Commun. Numer. Meth. Engng., 17, 485-494 (2001) · Zbl 0985.65121
[12] Dogan, A., Numerical solution of RLW equation using linear finite elements within Galerkin’s method, Appl. Math. Model., 26, 771-783 (2002) · Zbl 1016.76046
[13] Fei, Z.; Pérez-García, V. M.; Vázquez, L., Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme, Appl. Math. Comput., 71, 165-177 (1995) · Zbl 0832.65136
[14] Hu, J.; Xu, Y.; Hu, B., Conservative linear difference scheme for Rosenau-KdV equation, Adv. Math. Phys., 2013 (2013) · Zbl 1282.35332
[15] Hu, J.; Zheng, K.; Zheng, M., Numerical simulation and convergence analysis of a high-order conservative difference scheme for SRLW equation, Appl. Math. Model., 38, 5573-5581 (2014) · Zbl 1429.65185
[16] Korteweg, D. J.; de Vries, G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39, 422-443 (1895) · JFM 26.0881.02
[17] Li, S., Numerical study of a conservative weighted compact difference scheme for the symmetric regularized long wave equations, Numer. Methods Partial Differ. Equ., 35, 60-83 (2019) · Zbl 1416.76185
[18] Li, S.; Vu-Quoc, L., Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32, 1839-1875 (1995) · Zbl 0847.65062
[19] Lin, J.; Xie, Z.; Zhou, J., High-order compact difference scheme for the regularized long wave equation, Commun. Numer. Meth. Engng., 23, 135-156 (2007) · Zbl 1111.65074
[20] Mohapatra, S. C.; Fonseca, R. B.; Guedes Soares, C., Comparison of analytical and numerical simulations of long nonlinear internal solitary waves in shallow water, J. Coastal Res., 34, 928-938 (2018)
[21] Mohapatra, S.C., Fonseca, R.B., and Guedes Soares, C., A comparison between analytical and numerical simulations of solutions of the coupled Boussinesq equations, in Maritime Technology and Engineering, C. Guedes Soares & T.A. Santos, eds., Taylor & Francis, London, 2016, Vol. 3, pp. 1175-1180.
[22] Mohapatra, S.C. and Guedes Soares, C., Comparing solutions of the coupled Boussinesq equations in shallow water, in Maritime Technology and Engineering, C. Guedes Soares & T.A. Santos, eds., Taylor & Francis, London, 2015, pp. 947-954.
[23] Nie, T., A decoupled and conservative difference scheme with fourth-order accuracy for the symmetric regularized long wave equations, Appl. Math. Comput., 219, 9461-9468 (2013) · Zbl 1290.76104
[24] Omrani, K.; Abidi, F.; Achouri, T.; Khiari, N., A new conservative finite difference scheme for the Rosenau equation, Appl. Math. Comput., 201, 35-43 (2008) · Zbl 1156.65078
[25] Ozer, S.; Kutluay, S., An analytical-numerical method for solving the Korteweg-de Vries equation, Appl. Math. Compt., 164, 789-797 (2005) · Zbl 1070.65077
[26] Pan, X.; Zhang, L., On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation, Appl. Math. Model., 36, 3371-3378 (2012) · Zbl 1252.65144
[27] Park, M. A., On the Rosenau equation, Math. Appl. Comput., 9, 145-152 (1990) · Zbl 0723.35071
[28] Park, M. A., Pointwise decay estimate of solutions of the generalized Rosenau equation, J. Korean Math. Soc., 29, 261-280 (1992) · Zbl 0808.35020
[29] Poochinapan, K.; Wongsaijai, B.; Disyadej, T., Efficiency of high-order accurate difference schemes for the Korteweg-de Vries equation, Math. Prob. Eng., 2014 (2014) · Zbl 1407.65124
[30] Raslan, K. R., A computational method for the regularized long wave (RLW) equation, Appl. Math. Comput., 167, 1101-1118 (2005) · Zbl 1082.65582
[31] Ren, Z.; Wang, W.; Yu, D., A new conservative finite difference method for the nonlinear regularized long wave equation, Appl. Math. Sci., 5, 2091-2096 (2011) · Zbl 1242.76209
[32] Rosenau, P., A quasi-continuous description of a nonlinear transmission line, Phys. Scr., 34, 827-829 (1986)
[33] Rosenau, P., Dynamics of dense discrete systems, Prog. Theor. Phys., 79, 1028-1042 (1988)
[34] Seyler, C. E.; Fenstermacher, D. L., A symmetric regularized-long-wave equation, Phys. Fluids, 27, 4-7 (1984) · Zbl 0544.76170
[35] Shang, Y.; Gua, B., Analysis of Chebyshev pseudospectral method for multi-dimensional generalized SRLW euations, Appl. Math. Mech., 24, 1168-1183 (2003) · Zbl 1145.76412
[36] Shao, X.; Xue, G.; Li, C., A conservative weighted finite difference scheme for regularized long wave equation, Appl. Math. Comput., 219, 9202-9209 (2013) · Zbl 1288.65125
[37] Shaomei, F.; Boling, G.; Hua, Q., The existence of global attractors for a system of multi-dimensional symmetric regularized long wave equations, Commun. Non-linear Sci. Numer. Simul., 14, 61-68 (2009) · Zbl 1221.35362
[38] Smith, R. C.; Hill, J.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Parkinson, S. D.; Wilson, C., Comparing approaches for numerical modelling tsunami generation by deformable submarine slides, Ocean Model., 100, 125-140 (2016)
[39] Spotz, W.F. and Carey, G.F., High-order Compact Finite Difference Methods, Proceedings of the 3rd International Conference on Spectral and High Order Methods, Texas, 1995, pp. 397-407.
[40] Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations (2004), Society for Industrial and Applied Mathematics, Philadelphia · Zbl 1071.65118
[41] Tam, C. K.W.; Webb, J. C., Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys., 107, 262-281 (1993) · Zbl 0790.76057
[42] Wang, T.; Guo, B.; Zhang, L., New conservative difference schemes for a coupled nonlinear Schrödinger system, Appl. Math. Comput., 217, 1604-1619 (2010) · Zbl 1205.65242
[43] Wang, X.; Hu, J. S.; Zhang, H., A linear finite difference scheme for the generalized dissipative symmetric regularized long wave equation with damping, Thermal Sci., 23, 719-726 (2019)
[44] Wang, T.; Zhang, L.; Chen, F., Conservative schemes for the symmetric regularized long wave equations, Appl. Math. Comput., 190, 1063-1080 (2007) · Zbl 1124.65080
[45] Wongsaijai, B.; Mouktonglang, T.; Sukantamala, N.; Poochinapan, K., Compact structure-preserving approach to solitary wave in shallow water modeled by the Rosenau-RLW equation, Appl. Math. Comput., 340, 84-100 (2019) · Zbl 1428.76142
[46] Wongsaijai, B.; Oonariya, C.; Poochinapan, K., Compact structure-preserving algorithm with high accuracy extended to the improved Boussinesq equation, Math. Comput. Simul., 178, 125-150 (2020) · Zbl 1515.65225
[47] Wongsaijai, B.; Poochinapan, K., A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation, Appl. Math. Comput., 245, 289-304 (2014) · Zbl 1336.65143
[48] Yimnet, S.; Wongsaijai, B.; Rojsiraphisal, T.; Poochinapan, K., Numerical implementation for solving the symmetric regularized long wave equation, Appl. Math. Comput., 273, 809-825 (2016) · Zbl 1410.65334
[49] Zhang, X.; Schmidt, D.; Perot, B., Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics, J. Comput. Phys., 175, 764-791 (2002) · Zbl 1018.76036
[50] Zheng, K.; Hu, J., High-order conservative Crank-Nicolson scheme for regularized long wave equation, Adv. Differ. Equ., 2013, 12 (2013) · Zbl 1444.65051
[51] Zheng, Z.; Zhang, R.; Guo, B., The Fourier pseudo-spectral method for the SRLW equation, Appl. Math. Mech., 10, 843-852 (1989) · Zbl 0729.65074
[52] Zhou, Y., Application of Discrete Functional Analysis to The Finite Difference Method (1991), International Academic Publishers: International Academic Publishers, Beijing · Zbl 0732.65080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.