×

Evolution of the singularities of the Schwarz function corresponding to the motion of a vortex patch in the two-dimensional Euler equations. (English) Zbl 1479.76020

Summary: The paper deals with the calculation of the internal singularities of the Schwarz function corresponding to the boundary of a planar vortex patch during its self-induced motion in an inviscid, isochoric fluid. The vortex boundary is approximated by a simple, time-dependent map onto the unit circle, whose coefficients are obtained by fitting to the boundary computed in a contour dynamics numerical simulation of the motion. At any given time, the branch points of the Schwarz function are calculated, and from them, the generally curved shape of the internal branch cut, together with the jump of the Schwarz function across it. The knowledge of the internal singularities enables the calculation of the Schwarz function at any point inside the vortex, so that it is possible to check the validity of the map during the motion by comparing left and right hand sides of the evolution equation of the Schwarz function. Our procedure yields explicit functional forms of the analytic continuations of the velocity and its conjugate on the vortex boundary. It also opens a new way to understand the relation between the time evolution of the shape of a vortex patch during its motion, and the corresponding changes in the singular set of its Schwarz function.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
76M40 Complex variables methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ablowitz, M. J.; Fokas, A. S., Complex Variables: Introduction and Applications (2003), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1088.30001 · doi:10.1017/CBO9780511791246
[2] Constantin, P.; Titi, E. S., On the Evolution of Nearly Circular Vortex Patches, Comm. Math. Phys., 119, 2, 177-198 (1988) · Zbl 0673.76025 · doi:10.1007/BF01217737
[3] Crowdy, D. G., A Class of Exact Multipolar Vortices, Phys. Fluids, 11, 9, 2556-2564 (1999) · Zbl 1149.76353 · doi:10.1063/1.870118
[4] Crowdy, D. G., The Construction of Exact Multipolar Equilibria of the Two-Dimensional Euler Equations, Phys. Fluids, 14, 1, 257-267 (2002) · Zbl 1184.76114 · doi:10.1063/1.1420746
[5] Crowdy, D. G.; Cloke, M., Stability Analysis of a Class of Two-Dimensional Multipolar Vortex Equilibria, Phys. Fluids, 14, 6, 1862-1876 (2002) · Zbl 1185.76096 · doi:10.1063/1.1476302
[6] Crowdy, D. G., Exact Solutions for Rotating Vortex Arrays with Finite-Area Cores, J. Fluid Mech., 469, 209-235 (2002) · Zbl 1019.76011 · doi:10.1017/S0022112002001817
[7] Crowdy, D. G.; Marshall, J., Growing Vortex Patches, Phys. Fluids, 16, 8, 3122-3130 (2004) · Zbl 1186.76117 · doi:10.1063/1.1767771
[8] Davis, P. J., The Schwarz Function and Its Applications (1974), Buffalo, D.C.: Math. Assoc. America, Buffalo, D.C. · Zbl 0293.30001 · doi:10.5948/9781614440178
[9] Dritschel, D. G., The Stability and Energetics of Corotating Unifom Vortices, J. Fluid Mech., 157, 95-134 (1985) · Zbl 0574.76026 · doi:10.1017/S0022112085002324
[10] Dritschel, D. G., The Nonlinear Evolution of Rotating Configurations of Uniform Vorticity, J. Fluid Mech., 172, 157-182 (1986) · Zbl 0616.76069 · doi:10.1017/S0022112086001696
[11] Gakhov, F. D., Boundary Value Problems (1990), New York: Dover, New York · Zbl 0830.30026
[12] Kamm, J. R., Shape and Stability of Two-Dimensional Uniform Vorticity Regions, PhD Thesis, California Institute of Technology, Ann Arbor, Mich.: ProQuest LLC, 1987.
[13] Legras, B.; Dritschel, D. G., The Elliptical Model of Two-Dimensional Vortex Dynamics: 1. The Basic State, Phys. Fluids A, 3, 5, 845-854 (1991) · Zbl 0733.76013 · doi:10.1063/1.858015
[14] Muskhelishvili, N. I., Singular Integral Equations: Boundary Problems of Functions Theory and Their Applications to Mathematical Physics (2008), New York: Dover, New York
[15] Riccardi, G., Intrinsic Dynamics of the Boundary of a Two-Dimensional Uniform Vortex, J. Engrg. Math., 50, 1, 51-74 (2004) · Zbl 1073.76015 · doi:10.1023/B:ENGI.0000042119.98370.14
[16] Riccardi, G. and Durante, D., Velocity Induced by a Plane Uniform Vortex Having the Schwarz Function of Its Boundary with Two Simple Poles, J. Appl. Math., 2008, 586567, 40 pp. · Zbl 1162.30008
[17] Riccardi, G., An Analytical Study of the Self-Induced Inviscid Dynamics of Two-Dimensional Uniform Vortices, Acta Mech., 224, 2, 307-326 (2013) · Zbl 1401.76038 · doi:10.1007/s00707-012-0750-9
[18] Riccardi, G., Initial Stages of the Interaction between Uniform and Pointwise Vortices in an Inviscid Fluid, Eur. J. Mech. B Fluids, 53, 160-170 (2015) · Zbl 1408.76125 · doi:10.1016/j.euromechflu.2015.04.009
[19] Riccardi, G., A Complex Analysis Approach to the Motion of Uniform Vortices, Ocean Dyn., 68, 2, 273-293 (2018) · doi:10.1007/s10236-017-1129-1
[20] Riccardi, G., Remarks on Equilibria of Two-Dimensional Uniform Vortices with Polygonal Symmetry, Eur. J. Mech. B Fluids, 83, 1-14 (2020) · Zbl 1473.76014 · doi:10.1016/j.euromechflu.2020.03.006
[21] Riso, C.; Riccardi, G.; Mastroddi, F., Semi-Analytical Unsteady Aerodynamic Model of a Flexible Thin Airfoil, J. Fluids Struct., 80, 288-315 (2018) · doi:10.1016/j.jfluidstructs.2018.04.001
[22] Saffman, P. G., Vortex Dynamics (1992), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0777.76004
[23] Tricomi, F. G., Integral Equations (1985), New York: Dover, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.