×

Optimal control strategy for an age-structured SIR endemic model. (English) Zbl 1478.92228

Summary: In this article, we consider an age-structured SIR endemic model. The model is formulated from the available literature while adding some new assumptions. In order to control the infection, we consider vaccination as a control variable and a control problem is presented for further analysis. The method of weak derivatives and minimizing sequence argument are used for deriving necessary conditions and existence results. The desired criterion is achieved and sample simulations were presented which shows the effectiveness of the control.

MSC:

92D30 Epidemiology
49J20 Existence theories for optimal control problems involving partial differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Alexanderian; M. K. Gobbert; K. R. Fister; H. Gaff; S. Lenhart; E. Schaefer, An age-structured model for the spread of epidemic cholera: Analysis and simulation, Nonlinear Analysis: Real World Applications, 12, 3483-3498 (2011) · Zbl 1231.35268 · doi:10.1016/j.nonrwa.2011.06.009
[2] S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Springer, Dordrecht, 2000. · Zbl 0960.92026
[3] T. Arbogast; F. A. Milner, A finite difference method for a two-sex model of population dynamics, SIAM Journal of Numerical Analysis, 26, 1474-1486 (1989) · Zbl 0683.92016 · doi:10.1137/0726086
[4] V. Barbu; M. Iannelli, Optimal control of population dynamics, Journal of Optimization Theory & Applications, 102, 1-14 (1999) · Zbl 0984.92022 · doi:10.1023/A:1021865709529
[5] S. Bowong, Optimal control of the dynamics of tuberculosis, Nonlinear Dynamics, 61, 729-748 (2010) · Zbl 1204.49044 · doi:10.1007/s11071-010-9683-9
[6] L.-M. Cai; C. Modnak; J. Wang, An age-structured model for cholera control with vaccination, Applied Mathematics & Computations, 299, 127-140 (2017) · Zbl 1411.92170 · doi:10.1016/j.amc.2016.11.013
[7] R. D. Demasse; J.-J. Tewa; S. Bowong; Y. Emvudu, Optimal control for an age-structured model for the transmission of hepatitis B, Journal of Mathematical Biology, 73, 305-333 (2016) · Zbl 1349.35379 · doi:10.1007/s00285-015-0952-6
[8] W. Ding; S. Lenhart, Optimal harvesting of a spatially explicit fishery model, Natural Resource Modeling, 22, 173-211 (2009) · Zbl 1168.91480 · doi:10.1111/j.1939-7445.2008.00033.x
[9] Y. Emvudu; R. D. Demasse; D. Djeudeu, Optimal control using state-dependent Riccati equation of lost of sight in a tuberculosis model, Computational and Applied Mathematics, 32, 191-210 (2013) · Zbl 1322.92071 · doi:10.1007/s40314-013-0002-1
[10] K. R. Fister; S. Lenhart, Optimal control of a competitive system with age-structured, Journal of Mathematical Analysis & Applications, 291, 526-537 (2004) · Zbl 1043.92031 · doi:10.1016/j.jmaa.2003.11.031
[11] K. R. Fister; S. Lenhart; J. S. McNally, Optimizing chemotherapy in an HIV model, Electron Journal of Differential Equations, 32, 1-12 (1998) · Zbl 1068.92503
[12] D. M. Hartley; J. G. Morris; D. L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics?, PLoS Medicine, 3, 63-69 (2006)
[13] H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42, 599-653 (2000) · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[14] M. Iannelli and F. Milner, The Basic Approach to Age-Structured Population Dynamics: Models, Methods and Numerics, Springer, GX Dordrecht, The Netherlands, 2017. · Zbl 1403.92005
[15] H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017. · Zbl 1370.92010
[16] H. R. Joshi, Optimal control of an HIV immunology model, Optimal Control Applications & Methods, 23, 199-213 (2002) · Zbl 1072.92509 · doi:10.1002/oca.710
[17] A. Khan; G. Zaman, Asymptotic behavior of an age structure SIRS endemic model, Applied and Computational Mathematics, 17, 185-204 (2018) · Zbl 1455.92135
[18] A. Khan; G. Zaman, Global analysis of an age-structured SEIR endemic model, Chaos, Solitons and Fractals, 108, 154-165 (2018) · Zbl 1390.92139 · doi:10.1016/j.chaos.2018.01.037
[19] A. Khan; G. Zaman, Optimal control strategy of SEIR endemic model with continuous age-structure in the exposed and infectious classes, Optimal Control Applications & Methods, 39, 1716-1727 (2018) · Zbl 1401.92185 · doi:10.1002/oca.2437
[20] D. Kirschner; S. Lenhart; S. Serbin, Optimal control of the chemotherapy of HIV, Journal of Mathematical Biology, 35, 775-792 (1997) · Zbl 0876.92016 · doi:10.1007/s002850050076
[21] T. Kuniya; H. Inaba, Endemic threshold results for an age-structured SIS epidemic model with periodic parameters, Journal of Mathematical Analysis & Applications, 402, 477-492 (2013) · Zbl 1263.92041 · doi:10.1016/j.jmaa.2013.01.044
[22] H. Liu; J. Yu; G. Zhu, Global stability of an age-structured SIR epidemic model with pulse vaccination strategy, Journal of System Sciences & Complexity, 25, 417-429 (2012) · Zbl 1255.93106 · doi:10.1007/s11424-011-9177-y
[23] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015. · Zbl 1333.92006
[24] F. A. Milner; G. Rabbiolo, Rapidly converging numerical algorithms for models of population dynamics, Journal of Mathematical Biology, 30, 733-753 (1992) · Zbl 0795.92022 · doi:10.1007/BF00173266
[25] R. M. Neilan; S. Lenhart, Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons, Journal of Mathematical Analysis & Applications, 378, 603-619 (2011) · Zbl 1208.92070 · doi:10.1016/j.jmaa.2010.12.035
[26] M. d. R. de Pinho; F. N. Nogueira, On application of optimal control to SEIR normalized models: pros and cons, Mathematical Biosciences & Engineering, 14, 111-126 (2017) · Zbl 1351.49054 · doi:10.3934/mbe.2017008
[27] G. U. Rahman; R. P. Agarwal; L. Liu; A. Khan, Threshold dynamics and optimal control of an age-structured giving up smoking model, Nonlinear Analysis: Real World Applications, 43, 96-120 (2018) · Zbl 1392.92045 · doi:10.1016/j.nonrwa.2018.02.006
[28] N. H. Sweilam; S. M. AL-Mekhlafi, On the optimal control for fractional multi-strain TB model, Optimal Control Applications & Methods, 37, 1355-1374 (2016) · Zbl 1353.49029 · doi:10.1002/oca.2247
[29] M. Thater; K. Chudej; H. J. Pesch, Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth, Mathematical Biosciences & Engineering, 15, 485-505 (2018) · Zbl 1377.49021 · doi:10.3934/mbe.2018022
[30] G. Zaman; A. Khan, Dynamical aspects of an age-structured SIR endemic model, Computers and Mathematics with Applications, 72, 1690-1702 (2016) · Zbl 1359.93444 · doi:10.1016/j.camwa.2016.07.027
[31] F.-Q. Zhang; R. Liu; Y. Chen, Optimal harvesting in a periodic food chain model with size structures in predators, Applied Mathematics & Optimization, 75, 229-251 (2017) · Zbl 1380.49057 · doi:10.1007/s00245-016-9331-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.