×

A priori estimates from first principles in gas dynamics. (English) Zbl 1478.76059

Bodnár, Tomáš (ed.) et al., Waves in flows. Based on lectures given at the summer school, Prague, Czech Republic, August 27–31, 2018. Cham: Birkhäuser. Adv. Math. Fluid Mech., 1-47 (2021).
Summary: The topic that one calls Gas Dynamics studies the motion of a very large number of molecules when there is enough room between them so that each one can move, and the motion is dominant in the overall behaviour, contrary to the case of liquids. The molecules interact in one way or another. At first glance, one often identifies interactions to collisions, but we may also consider medium-range interaction through some potential such as that of Lennard-Jones. One considers only pairwise interactions, either because the collisions involving three or more particles are extremely rare, or because forces involve only pairs of particles.
For the entire collection see [Zbl 1471.76007].

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76N15 Gas dynamics (general theory)
82B40 Kinetic theory of gases in equilibrium statistical mechanics
35Q20 Boltzmann equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, 2011) · Zbl 1220.46002
[2] K. Yosida, Functional Analysis (Springer, 1995) · Zbl 0842.92020
[3] H. Gajewski, K. Gr \({\ddot{\text{o}}}\) ger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Academic Press, Berlin, 1974) (Russian 1978) · Zbl 0289.47029
[4] P. Drábek, J. Milota, Methods of Nonlinear Analysis (Birkhäser, 2007) · Zbl 1176.35002
[5] E. Zeidler, Nonlinear Functional Analysis and Its Applications I (Springer, 1986) · Zbl 0583.47050
[6] P. Kučera, Basic properties of solution of the non-steady Navier-Stokes equations with mixed boundary conditions in a bounded domain. Ann. Univ. Ferrara 55, 289-308 (2009) · Zbl 1205.35198
[7] A.N. Kolmogorov, S.V. Fomin, Element of Theory of Functions and Functional Analysis (Moscow “Science”, Russian, 1981) · Zbl 0501.46002
[8] H.O. Fattorini, Infinite Dimensional Optimization and Control Theory (Cambridge University Press, Cambridge, 1999) · Zbl 0931.49001
[9] R.A. Adams, J.J.F. Fournier, Sobolev Spaces (Academic Press, 2005) · Zbl 1098.46001
[10] A. Lunardi, Interpolation Theory, 2nd edn. (Edizioni della Normale, Pisa, 2009) · Zbl 1171.41001
[11] J. Bergh, J. Löfström, Interpolation Spaces (Springer, 1976) · Zbl 0344.46071
[12] V.I. Bogachev, Measure Theory I, II (Springer, 2007) · Zbl 1120.28001
[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains (SIAM, Philadelphia, 1985) · Zbl 0695.35060
[14] V. Girault, P.A. Raviart, Finite Element Methods for Navier-Stokes Equations (Springer, 1986) · Zbl 0585.65077
[15] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I (Springer, Berlin, 1972) · Zbl 0223.35039
[16] L. Grafakos, Modern Fourier Analysis (Springer, 2009) · Zbl 1158.42001
[17] F. Demengel, G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations (Springer, 2012) · Zbl 1239.46001
[18] L.C. Evans, Partial Differential Equations (American Mathematical Society, 2010) · Zbl 1194.35001
[19] T. Roubíček, Nonlinear Partial Differential Equations with Applications (Birkhäuser Verlag, 2005) · Zbl 1087.35002
[20] P.G. Ciarlet, Mathematical Elasticity I: Three-Dimensional Elasticity (North-Holland, 1988) · Zbl 0648.73014
[21] W. Pompe, Korn’s first inequality with variable coefficients and its generalization. Comment. Math. Univ. Carol. 44, 57-70 (2003) · Zbl 1098.35042
[22] The Mathematical Society of Japan, Encyclopedic Dictionary of Mathematics, 2edn. (The MIT Press, Cambridge, 1993)
[23] E. Hille, R.S. Phillips, Functional Analysis and Semi-Groups (American Mathematical Society Providence, Rhode Island, 1957) · Zbl 0078.10004
[24] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (Johann Ambrosius Barth Verlag, 1995) · Zbl 0830.46028
[25] J. Simon, Compact sets in the space \(L^p(0, T;B)\). Ann. Math. Pure Appl. 146(4), 65-96 (1987) · Zbl 0629.46031
[26] E. Zeidler, Nonlinear Functional Analysis and Its Applications II/B (Springer, 1990) · Zbl 0684.47029
[27] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux limites Non linéaires (Dunod, Gauthier-Villars, Paris, 1969) (Russian 1972) · Zbl 0189.40603
[28] H. Brézis, Perturbation non lineaire d’opérateurs maximaux montones. C. R. Acad. Sci. Paris Ser. I(269), 566-569 (1968) · Zbl 0182.19001
[29] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces (Springer, 2010) · Zbl 1197.35002
[30] G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics (Springer, Berlin, 1976) · Zbl 0331.35002
[31] J. Naumann, On evolution inequalities of Navier-Stokes type in three dimensions. Ann. Math. Pure Appl. 124(4), 107-125 (1980) · Zbl 0438.35064
[32] Y. Qin, Integral and Discrete Inequalities and Their Applications I (Birkhäuser, 2016) · Zbl 1359.26004
[33] V.Ya. Rivkind, Stationary motion of a viscous drop taking into account its deformation. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 84, 220-243 (1979) (in Russian) (English transl. in J. Soviet. Math. 21(3), 405-420 (1983)) · Zbl 0515.76047
[34] V.Ya. Rivkind, A priori estimates and the method of successive approximations for solution of the problem of movement of a drop. Trudy Mat. Inst. Steklov. 159, 150-166 (1983) (in Russian) (English transl. in Proc. Steklov Inst. Math. 159, 155-172 (1984)) · Zbl 0559.76029
[35] V.Ya. Rivkind, N.B. Friedman, On the Navier-Stokes equations with discontinuous coefficients. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38, 137-148 (1973) (in Russian) (English transl. in J. Soviet Math. 8(4), 456-464 (1977))
[36] W. Rybczynski, Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium. Bull. Int. Acad., Sci. Cracovia, Cl. Sci. Math. Nat., Ser. A (1911), pp. 40-44 · JFM 42.0811.02
[37] Yo. Shibata, S. Shimizu, Maximal L_p − L_q-regularity for the two-phase Stokes equations. Model problems. J. Differ. Equ. 251, 373-419 (2011) · Zbl 1230.35089
[38] Shimizu, S., Local solvability of free boundary problems for the two-phase Navier-Stokes equations with surface tension in the whole space, Progr. Nonlin. Diff. Eq. Their Appl., 80, 647-686 (2011) · Zbl 1247.35208
[39] V.A. Solonnikov, Estimates of the solution of an initial-boundary value problem for a linear nonstationary Navier-Stokes system, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 59, 178-254 (1976) (in Russian) (English transl. in J. Soviet Math. 10(2), 336-393 (1978)) · Zbl 0389.76024
[40] V.A. Solonnikov, On non-stationary motion of a finite liquid mass bounded by a free surface. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 152, 137-157 (1986) (in Russian) (English transl. in J. Soviet Math. 40(5), 672-686 (1988)) · Zbl 0639.76035
[41] V.A. Solonnikov, On the evolution of an isolated volume of a viscous incompressible capillary fluid for large values of time. Vestn. LSU, Ser. 1 3(15), 49-55 (1987) (in Russian) (English transl. in Vestn. Leningr. Univ., Math. 20(3), 52-58 (1987; Zbl 0654.76029)) · Zbl 0654.76029
[42] V.A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid, Izv. Akad. Nauk SSSR, Ser. Mat. 51(5), 1065-1087 (1987) (in Russian) (English transl. in Math. USSR-Izv. 31(2), 381-405 (1988)) · Zbl 0850.76180
[43] V.A. Solonnikov, On an initial-boundary value problem for the Stokes systems arising in the study of a problem with a free boundary. Trudy Mat. Inst. Steklov. 188, 150-188 (1990) (in Russian) (English transl. in Proc. Steklov Inst. Math. 3, 191-239 (1991)) · Zbl 0731.35079
[44] V.A. Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval. Algebra i Analiz 3(1), 222-257 (1991) (in Russian) (English transl. in St. Petersburg Math. J. 3(1), 189-220 (1992)) · Zbl 0850.76132
[45] V.A. Solonnikov, L_p-theory of the problem of motion of two incompressible capillary fluids in a container. Probl. Mat. Anal. 75, 93-152 (2014) (English. transl. in J. Math. Sci. 198(6), 761-827 (2014)) · Zbl 1309.35093
[46] Solonnikov, VA; Denisova, IV, Classical Well-Posedness of Free Boundary Problems in Viscous Incompressible Fluid Mechanics, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids I, 1-86 (2017), Berlin: Springer, Berlin
[47] Takahashi, Sh, On global weak solutions of the nonstationary two-phase Navier-Stokes flow, Adv. Math. Sci. Appl., 5, 321-342 (1995) · Zbl 0827.35101
[48] N. Tanaka, Global existence of two phase nonhomogeneous viscous incompressible fluid flow. Commun. Partial Differ. Equ. 18(1 and 2), 41-81 (1993) · Zbl 0773.76073
[49] Thorpe, JA, Elementary Topics in Differential Geometry (1978), New York-Heidelberg-Berlin: Springer, New York-Heidelberg-Berlin · Zbl 0404.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.