×

Irreversible deformation of a rotating disk having angular acceleration. (English) Zbl 1478.74015

Summary: This paper is devoted to the study of deformation of a disk rotating with changing angular velocity under consecutive accumulation of creep and plastic strains. The differential equations which help to calculate the fields of stresses, strains, displacements and velocities are obtained; the method of finite difference is used for solving the problem. The evolution of the viscoplastic flow region is investigated. The Norton power law is used as creep law; the von Mises’s generalized yield criterion is applied as viscoplastic flow condition. The obtained solution is compared to the classical elastoplasticity case. A hollow disk and a disk with a rigid inclusion are studied.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74H99 Dynamical problems in solid mechanics
74E05 Inhomogeneity in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aleksandrova, N., Application of mises yield criterion to rotating solid disk problem, Int. J. Eng. Sci., 51, 333-337 (2012) · Zbl 1423.74144 · doi:10.1016/j.ijengsci.2011.10.006
[2] Antoni, N., Contact separation and failure analysis of a rotating thermo-elastoplastic shrink-fit assembly, Appl. Math. Model., 37, 4, 2352-2363 (2013) · Zbl 1349.74271 · doi:10.1016/j.apm.2012.05.018
[3] Bayat, M.; Sahari, BB; Saleem, M.; Ali, A.; Wong, SV, Bending analysis of a functionally graded rotating disk based on the first order shear deformation theory, Appl. Math. Model., 33, 11, 4215-4230 (2009) · Zbl 1205.74012 · doi:10.1016/j.apm.2009.03.001
[4] Begun, AS; Burenin, AA; Kovtanyuk, LV, Large irreversible deformations under conditions of changing mechanisms of their formation and the problem of definition of plastic potentials, Dokl. Phys., 61, 9, 463-466 (2016) · doi:10.1134/S102833581609007X
[5] Begun, AS; Burenin, AA; Kovtanyuk, LV; Lemza, AO, On the mechanisms of production of large irreversible strains in materials with elastic, viscous and plastic properties, Arch. Appl. Mech., 90, 4, 829-845 (2020) · doi:10.1007/s00419-019-01641-x
[6] Begun, AS; Kovtanyuk, LV; Lemza, AO, Change of accumulation mechanisms of irreversible deformations of materials in an example of viscometric deformation, Mech. Solids, 53, 1, 85-92 (2018) · doi:10.3103/S0025654418010107
[7] Burenin, A.; Bykovtsev, G.; Kovtanyuk, L., On one simple model for elastic-plastic medium under finite deformation, Dokl. Akad. Nauk, 347, 2, 199-201 (1996)
[8] Burenin, AA; Galimzyanova, KN; Kovtanyuk, LV; Panchenko, GL, Matching growth mechanisms of irreversible deformation of a hollow sphere under uniform compression, Dokl. Phys., 63, 10, 407-410 (2018) · doi:10.1134/S1028335818100026
[9] Dai, T.; Dai, HL, Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed, Appl. Math. Model., 40, 17, 7689-7707 (2016) · Zbl 1471.74004 · doi:10.1016/j.apm.2016.03.025
[10] Dastjerdia, S.; Akgoz, B.; Civalek, O.; Malikan, M.; Eremeyev, VA, On the non-linear dynamics of torus-shaped and cylindrical shell structures, Int. J. Eng. Sci., 157, 103371 (2020) · Zbl 07261128 · doi:10.1016/j.ijengsci.2020.103371
[11] Eraslan, A.; Argeso, H., Limit angular velocities of variable thickness rotating disks, Int. J. Solids Struct., 39, 12, 3109-3130 (2002) · Zbl 1047.74020 · doi:10.1016/S0020-7683(02)00249-4
[12] Firsov, SN; Prokudin, AN, Antiplane axisymmetric creep deformation of incompressible medium, J. Sib. Fed. Univ. - Math. Phys., 8, 4, 406-415 (2015) · Zbl 1525.74032 · doi:10.17516/1997-1397-2015-8-4-406-415
[13] Firsov, SV; Prokudin, AN; Burenin, AA, Creep and plastic flow in a rotating cylinder with a rigid inclusion, J. Appl. Ind. Math., 13, 4, 642-652 (2019) · Zbl 07630591 · doi:10.1134/S1990478919040070
[14] Gamer, U., Elastic-plastic deformation of the rotating solid disk, Ingenieur-Archiv, 54, 5, 345-354 (1984) · Zbl 0554.73029 · doi:10.1007/BF00532817
[15] Gamer, U.; Mack, W.; Varga, I., Rotating elastic-plastic solid shaft with fixed ends, Int. J. Eng. Sci., 35, 3, 253-267 (1997) · Zbl 0902.73050 · doi:10.1016/S0020-7225(96)00085-7
[16] Ghorbani, MT, A semi-analytical solution for time-variant thermoelastic creep analysis of functionally graded rotating disks with variable thickness and properties, Int. J. Adv. Des. Manuf. Technol., 5, 2, 41-50 (2012)
[17] Gupta, SK; Pankaj, D., Creep transition in a thin rotating disc with rigid inclusion, Def. Sci. J., 57, 2, 185-195 (2007) · doi:10.14429/dsj.57.1745
[18] Gupta, VK; Chandrawat, HN; Singh, SB; Ray, S., Creep behavior of a rotating functionally graded composite disc operating under thermal gradient, Metal. Mater. Trans. A, 35, 4, 1381-1391 (2004) · doi:10.1007/s11661-004-0313-3
[19] Haase, R., Thermodynamics of Irreversible Processes (1990), New York: Dover books on physics and chemistry. Dover, New York
[20] Haghpanah, B.; Nayeb-Hashemi, H.; Vaziri, A., Elasto-plastic stresses in a functionally graded rotating disk, ASME J. Eng. Mater. Technol., 134, 2, 021004-1-021004-11 (2012)
[21] Kamal, S., Analysis of residual stress in the rotational autofrettaged of thick-walled disks, J. Press. Vessel Technol. Trans. ASME., 140, 6, 061402 (2018) · doi:10.1115/1.4041339
[22] Naghdi, PM, A critical review of the state of finite plasticity, Zeitschrift für angewandte Mathematik und Physik ZAMP, 41, 3, 315-394 (1990) · Zbl 0712.73032 · doi:10.1007/BF00959986
[23] Rees, D., Elastic-plastic stresses in rotating discs by von mises and tresca, ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik, 79, 4, 281-288 (1999) · Zbl 0935.70507 · doi:10.1002/(SICI)1521-4001(199904)79:4<281::AID-ZAMM281>3.0.CO;2-V
[24] Zharfi, H.; Toussi, HE, Numerical creep analysis of FGM rotating disc with GDQ method, J. Theor. Appl. Mech., 55, 1, 331-341 (2017) · doi:10.15632/jtam-pl.55.1.331
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.