×

New recommended designs for screening either qualitative or quantitative factors. (English) Zbl 1477.62196

Summary: By the affine resolvable design theory, there are 68 non-isomorphic classes of symmetric orthogonal designs involving 13 factors with 3 levels and 27 runs. This paper gives a comprehensive study of all these 68 non-isomorphic classes from the viewpoint of the uniformity criteria, generalized word-length pattern and Hamming distance pattern, which provides some interesting projection and level permutation behaviors of these classes. Selecting best projected level permuted subdesigns with \(3\leq k\leq 13\) factors from all these 68 non-isomorphic classes is discussed via these three criteria with catalogues of best values. New recommended uniform minimum aberration and minimum Hamming distance designs are given for investigating either qualitative or quantitative \(4\leq k\leq 13\) factors, which perform better than the existing recommended designs in literature and the existing uniform designs. A new efficient technique for detecting non-isomorphic designs is given via these three criteria. By using this new approach, in all projections into \(1\leq k\leq 13\) factors we classify each class from these 68 classes to non-isomorphic subclasses and give the number of isomorphic designs in each subclass. Close relationships among these three criteria and lower bounds of the average uniformity criteria are given as benchmarks for selecting best designs.

MSC:

62K05 Optimal statistical designs
62K15 Factorial statistical designs
94B05 Linear codes (general theory)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Angelopoulos, P.; Evangelaras, H.; Koukouvinos, C., Model identification using 27 runs three level orthogonal arrays, J Appl Stat, 36, 33-38 (2009) · Zbl 1473.62267 · doi:10.1080/02664760802382509
[2] Chen, J.; Sun, DX; Wu, CFJ, A catalogue of two-level and three-level fractional factorial designs with small runs, Int Stat Rev, 61, 131-135 (1993) · Zbl 0768.62058 · doi:10.2307/1403599
[3] Chen, W.; Qi, ZF; Zhou, YD, Constructing uniform designs under mixture discrepancy, Stat Probab Lett, 97, 76-82 (2015) · Zbl 1314.62180 · doi:10.1016/j.spl.2014.11.007
[4] Clark, JB; Dean, AM, Equivalence of fractional factorial designs, Stat Sin, 11, 537-547 (2001) · Zbl 0980.62058
[5] Dey, A.; Mukerjee, R., Fractional factorial plans (1999), New York: Wiley, New York · Zbl 0930.62081 · doi:10.1002/9780470316986
[6] Elsawah, AM, A closer look at de-aliasing effects using an efficient foldover technique, Statistics, 51, 3, 532-557 (2017) · Zbl 1368.62228 · doi:10.1080/02331888.2016.1240682
[7] Elsawah, AM, A powerful and efficient algorithm for breaking the links between aliased effects in asymmetric designs, Aust NZ J Stat, 59, 1, 17-41 (2017) · Zbl 1373.62408 · doi:10.1111/anzs.12181
[8] Elsawah AM (2017c) Constructing optimal router bit life sequential experimental designs: new results with a case study. Commun Stat Simul Comput. doi:10.1080/03610918.2017.1397164 · Zbl 07551464
[9] Elsawah, AM, Choice of optimal second stage designs in two-stage experiments, Comput Stat, 33, 2, 933-965 (2018) · Zbl 1417.62224 · doi:10.1007/s00180-017-0778-3
[10] Elsawah, AM; Qin, H., Mixture discrepancy on symmetric balanced designs, Stat Probab Lett, 104, 123-132 (2015) · Zbl 1318.62256 · doi:10.1016/j.spl.2015.05.007
[11] Elsawah, AM; Qin, H., A new strategy for optimal foldover two-level designs, Stat Probab Lett, 103, 116-126 (2015) · Zbl 1328.62489 · doi:10.1016/j.spl.2015.04.020
[12] Elsawah, AM; Qin, H., Asymmetric uniform designs based on mixture discrepancy, J Appl Stat, 43, 12, 2280-2294 (2016) · Zbl 1514.62541 · doi:10.1080/02664763.2016.1140727
[13] Elsawah AM, Fang KT (2018) A catalog of optimal foldover plans for constructing U-uniform minimum aberration four-level combined designs. J Appl Stat. doi:10.1080/02664763.2018.1545013 · Zbl 1516.62269
[14] Evangelaras, H.; Koukouvinos, C.; Dean, AM; Dingus, CA, Projection properties of certain three level orthogonal arrays, Metrika, 62, 241-257 (2005) · Zbl 1078.62083 · doi:10.1007/s00184-005-0409-9
[15] Evangelaras, H.; Koukouvinos, C.; Lappas, E., 18-run nonisomorphic three level orthogonal arrays, Metrika, 66, 31-37 (2007) · Zbl 1433.62231 · doi:10.1007/s00184-006-0085-4
[16] Fang, KT; Zhang, A., Minimum aberration Majorization in non-isomorphic saturated asymmetric designs, J Stat Plan Inference, 126, 337-346 (2004) · Zbl 1075.62063 · doi:10.1016/j.jspi.2003.07.015
[17] Fang, KT; Tang, Y.; Yin, JX, Lower bounds of various criteria in experimental designs, J Stat Plan Inference, 138, 184-195 (2008) · Zbl 1144.62062 · doi:10.1016/j.jspi.2007.05.013
[18] Fang, KT; Ke, X.; Elsawah, AM, Construction of uniform designs via an adjusted threshold accepting algorithm, J Complex, 43, 28-37 (2017) · Zbl 1391.62150 · doi:10.1016/j.jco.2017.05.002
[19] Fries, A.; Hunter, WG, Minimum aberration \(2^{k-p}\) designs, Technometrics, 8, 601-608 (1980) · Zbl 0453.62063
[20] Hall, M. Jr, Hadamard matrix of order 16, Jet Propuls Lab Res Summ, 1, 21-26 (1961)
[21] Hedayat, AS; Sloane, NJ; Stufken, J., Orthogonal arrays: theory and application (1999), Berlin: Springer, Berlin · Zbl 0935.05001 · doi:10.1007/978-1-4612-1478-6
[22] Hickernell, FJ, A generalized discrepancy and quadrature error bound, Math Comput, 67, 299-322 (1998) · Zbl 0889.41025 · doi:10.1090/S0025-5718-98-00894-1
[23] Hickernell FJ (1998b) Lattice rules: how well do they measure up? In: Hellekalek P, Larcher G (eds) Random and quasi-random point sets. Lecture notes in statistics, vol 138. Springer, New York, pp 109-166 · Zbl 0920.65010
[24] Lam, C.; Tonchev, VD, Classification of affine resolvable \(2-(27, 9, 4)\) designs, J Stat Plan Inference, 56, 187-202 (1996) · Zbl 0874.05009 · doi:10.1016/S0378-3758(96)00018-3
[25] Ma, CX; Fang, KT, A note on generalized aberration in fractional designs, Metrika, 53, 85-93 (2001) · Zbl 0990.62067 · doi:10.1007/s001840100112
[26] Ma, CX; Fang, KT; Lin, DKJ, On isomorphism of factorial designs, J Complex, 17, 86-97 (2001) · Zbl 0979.62055 · doi:10.1006/jcom.2000.0569
[27] Sartono, B.; Goos, P.; Schoen, ED, Classification of three-level strength-3 arrays, J Stat Plan Inference, 142, 4, 794-809 (2012) · Zbl 1232.62112 · doi:10.1016/j.jspi.2011.09.014
[28] Sun, DX; Wu, CFJ; Kuo, W., Statistical properties of Hadamard matrices of order 16, Quality through engineering design, 169-179 (1993), Amsterdam: Elsevier, Amsterdam
[29] Tang, B.; Deng, LY, Minimum \(G_2\)-aberration for nonregular fractional factorial designs, Ann Stat, 27, 1914-1926 (2001) · Zbl 0967.62055
[30] Tang, Y.; Xu, H., An effective construction method for multi-level uniform designs, J Stat Plan Inference, 143, 1583-1589 (2013) · Zbl 1279.62162 · doi:10.1016/j.jspi.2013.04.009
[31] Tang, Y.; Xu, H., Permuting regular fractional factorial designs for screening quantitative factors, Biometrika, 101, 2, 333-350 (2014) · Zbl 1452.62591 · doi:10.1093/biomet/ast073
[32] Tang, Y.; Xu, H.; Lin, DKJ, Uniform fractional factorial designs, Ann Stat, 40, 891-907 (2012) · Zbl 1274.62505 · doi:10.1214/12-AOS987
[33] Wang, Y.; Fang, KT, A note on uniformdistribution and experimental design, Chin Sci Bull, 26, 485-489 (1981) · Zbl 0493.62068
[34] Xu, H., A datalogue of three-level regular fractiional factorial designs, Metrika, 62, 259-281 (2005) · Zbl 1078.62084 · doi:10.1007/s00184-005-0408-x
[35] Xu, H.; Wu, CFJ, Generalized minimum aberration for asymmetrical fractional factorial designs, Ann Stat, 29, 549-560 (2001) · Zbl 1012.62083 · doi:10.1214/aos/1009210552
[36] Xu, H.; Zhang, J.; Tang, Y., Level permutation method for constructing uniform designs under the wrap-around \(L_2\)-discrepancy, J Complex, 30, 46-53 (2014) · Zbl 1295.05073 · doi:10.1016/j.jco.2013.09.003
[37] Yang X, Yang G-J, Su Y-J (2018) Lower bound of a verage centered \(L_2\)-discrepancy for U-type designs. Commun Stat Theory Methods. doi:10.1080/03610926.2017.1422761 · Zbl 07530639
[38] Zhou, YD; Xu, H., Space-filling fractional factorial designs, J Am Stat Assoc, 109, 507, 1134-1144 (2014) · Zbl 1368.62232 · doi:10.1080/01621459.2013.873367
[39] Zhou, YD; Fang, KT; Ning, JH, Mixture discrepancy for quasi-random point sets, J Complex, 29, 283-301 (2013) · Zbl 1282.65018 · doi:10.1016/j.jco.2012.11.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.