Misfit stresses and their relaxation by misfit dislocation loops in core-shell nanoparticles with truncated spherical cores. (English) Zbl 1475.74022

Summary: For the first time, we suggest a theoretical model, which describes the misfit stress relaxation in spherical core-shell nanoparticles with axisymmetric truncated spherical cores through the formation of circular prismatic loops of misfit dislocations at the core-shell interface. The special case of a semispherical core with base in the equatorial plane of the nanoparticle is considered and analyzed in detail. It is shown that the formation of misfit dislocation is energetically favorable when the misfit strain reaches its critical value, which depends on the system parameters. When forming, the misfit dislocation occupies in most cases its optimal position at the distance about of 1/4 of the core radius from the core base. Nanoparticles with cores of radius about of 3/4 of the shell radius are the less stable to generation of misfit dislocation loops.


74E30 Composite and mixture properties
74M25 Micromechanics of solids
74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
Full Text: DOI


[1] Bateman, H.; Erdélyi, A., Higher Transcendental Functions, vol. 1 (1953), Mc Graw-Hill Book Company INC: Mc Graw-Hill Book Company INC New York
[2] Beanland, R.; Dunstan, D. J.; Goodhew, P. J., Plastic relaxation and relaxed buffer layers for semiconductor epitaxy, Adv. Phys., 45, 87-146 (1996)
[3] Behrens, S., Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions, Nanoscale, 3, 877-892 (2011)
[4] Bhattarai, N.; Casillas, G.; Ponce, A.; Jose-Yacaman, M., Strain-release mechanisms in bimetallic core-shell nanoparticles as revealed by Cs-corrected STEM, Surf. Sci., 609, 161-166 (2013)
[5] Carbone, L.; Cozzoli, P. D., Colloidal heterostructured nanocrystals: synthesis and growth mechanisms, Nano Today, 5, 449-493 (2010)
[6] Chaudhuri, R. G.; Paria, S., Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev., 112, 2373-2433 (2012)
[7] De Mello Donegá, C., Synthesis and properties of colloidal hetero nanocrystals, Chem. Soc. Rev., 40, 1512-1546 (2011)
[8] Ding, Y.; Fan, F.; Tian, Z.; Wang, Z. L., Atomic structure of Au-Pd bimetallic alloyed nanoparticles, J. Am. Chem. Soc., 132, 12480-12486 (2010)
[9] Ding, Y.; Sun, X.; Wang, Z. L.; Sun, S., Misfit dislocations in multimetallic core-shelled nanoparticles, Appl. Phys. Lett., 100, 111603(1)-111603(3) (2012)
[10] Dundurs, J.; Salamon, N. J., Circular prismatic dislocation loop in a two-phase material, Phys. Status Solidi (b), 50, 125-133 (1972)
[11] Ferrando, R.; Jellinek, J.; Johnston, R. L., Nanoalloys: from theory to applications of alloy clusters and nanoparticles, Chem. Rev., 108, 845-910 (2008)
[12] Fitzgerald, E. A., Dislocations in strained layer epitaxy: theory, experiment, and applications, Mater. Sci. Rep., 7, 87-142 (1991)
[13] Freund, L. B.; Suresh, S., Thin Film Materials: Stress, Defect Formation and Surface Evolution (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1152.74301
[14] Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y., Bimetallic nanocrystals: syntheses, properties, and applications, Chem. Rev., 116, 10414-10472 (2016)
[15] (Gupta, R. K.; Misra, M., Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications (2017), Elsevier: Elsevier Amsterdam-Oxford-Cambridge (MA, USA))
[16] Gutkin, M. Yu., Misfit stress relaxation in composite nanoparticles, Int. J. Eng. Sci., 61, 59-74 (2012)
[17] Gutkin, M. Yu.; Kolesnikova, A. L.; Krasnitckii, S. A.; Romanov, A. E., Misfit dislocation loops in composite core-shell nanoparticles, Phys. Solid State, 56, 723-730 (2014)
[18] Gutkin, M. Yu.; Kolesnikova, A. L.; Krasnitckii, S. A.; Romanov, A. E.; Shalkovskii, A. G., Misfit dislocation loops in hollow core-shell nanoparticles, Scr. Mater., 83, 1-4 (2014)
[19] Gutkin, M. Yu.; Kolesnikova, A. L.; Romanov, A. E., Misfit dislocations and other defects in thin films, Mater. Sci. Eng. A, 164, 433-437 (1993)
[20] Gutkin, M. Yu.; Krasnitckii, S. A.; Smirnov, A. M.; Kolesnikova, A. L.; Romanov, A. E., Dislocation loops in solid and hollow semiconductor and metal nanoheterostructures, Phys. Solid State, 57, 1177-1182 (2015)
[21] Gutkin, M. Yu.; Ovid’ko, I. A.; Sheinerman, A. G., Misfit dislocations in wire composite solids, J. Phys. Condens. Matter, 12, 5391-5401 (2000)
[22] Gutkin, M. Yu.; Smirnov, A. M., Generation of rectangular prismatic dislocation loops in shells and cores of composite nanoparticles, Phys. Solid State, 56, 731-738 (2014)
[23] Gutkin, M. Yu.; Smirnov, A. M., Initial stages of misfit stress relaxation in composite nanostructures through generation of rectangular prismatic dislocation loops, Acta Mater., 88, 91-101 (2015)
[24] Gutkin, M. Yu.; Smirnov, A. M., Initial stages of misfit stress relaxation through the formation of prismatic dislocation loops in GaN-Ga_2O_3 composite nanostructures, Phys. Solid State, 58, 1611-1621 (2016)
[25] Huang, R.; Wen, Y. H.; Zhu, Z. Z.; Sun, S. G., Atomic-scale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles, Phys. Chem. Chem. Phys., 18, 9847-9854 (2016)
[26] Hirth, J. P.; Lothe, J., Theory of Dislocations (1982), Wiley
[27] Jain, S. C.; Harker, A. H.; Cowley, R. A., Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other systems, Philos. Mag. A, 75, 1461-1515 (1997)
[28] Khanal, S.; Casillas, G.; Bhattarai, N.; Velázquez-Salazar, J. J.; Santiago, U.; Ponce, A.; Mejía-Rosales, S.; José-Yacamán, M., CuS_2-passivated Au-core, Au_3Cu-shell nanoparticles analyzed by atomistic-resolution Cs-corrected STEM, Langmuir, 29, 9231-9239 (2013)
[29] Khanal, S.; Casillas, G.; Velazquez-Salazar, J. J.; Ponce, A.; Jose-Yacaman, M., Atomic resolution imaging of polyhedral PtPd core-shell nanoparticles by Cs-corrected STEM, J. Phys. Chem. C, 116, 23596-23602 (2012)
[30] Kolesnikova, A. L.; Gutkin, M. Yu.; Krasnitckii, S. A.; Romanov, A. E., Circular prismatic dislocation loops in elastic bodies with spherical free surfaces, Int. J. Solid Struct., 50, 1839-1857 (2013)
[31] Kolesnikova, A. L.; Gutkin, M. Yu.; Romanov, A. E., Analytical elastic models of finite cylindrical and truncated spherical inclusions, Int. J. Solid Struct., 143, 59-72 (2018)
[32] Kolesnikova, A. L.; Gutkin, M. Yu.; Krasnitckii, S. A.; Smirnov, A. M.; Dorogov, M. V.; Serebryakova, V. S.; Romanov, A. E.; Aifantis, E. C., On the elastic description of a spherical Janus particle, Rev. Adv. Mater. Sci., 57, 246-256 (2018)
[33] Kolesnikova, A. L.; Romanov, A. E., Misfit dislocation loop nucleation at a quantum dot, Tech. Phys. Lett., 30, No 2, 126-128 (2004)
[34] Kolesnikova, A. L.; Romanov, A. E., Circular Dislocation-Disclination Loops and Their Application to Boundary Problem Solution in the Theory of Defects. Preprint No. 1019 (1986), Ioffe Physico-Technical Institute: Ioffe Physico-Technical Institute Leningrad, (in Russian)
[35] Kolesnikova, A. L.; Romanov, A. E., Misfit dislocation loops and critical parameters of quantum dots and wires, Phil. Mag. Lett., 84, No 8, 501-506 (2004)
[36] Krauchanka, M. Yu.; Krasnitckii, S. A.; Gutkin, M. Yu.; Kolesnikova, A. L.; Romanov, A. E., Circular loops of misfit dislocations in decahedral core-shell nanoparticles, Scr. Mater., 167, 81-85 (2019)
[37] Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q., Core-shell nanoparticle-enhanced Raman spectroscopy, Chem. Rev., 117, 5002-5069 (2017)
[38] Liang, W. I.; Zhang, X.; Zan, Y.; Pan, M.; Czarnik, G.; Bustillo, K.; Xu, J.; Chu, Y. H.; Zheng, H., In situ study of Fe_3Pt-Fe_2O_3 core-shell nanoparticle formation, J. Am. Chem. Soc., 137, 14850-14853 (2015)
[39] Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z.; Lin, Z., Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation, Energy Environ. Sci., 10, 402-434 (2017)
[40] Londono-Calderon, A.; Bruma, A.; Uribe, D. B.; Ponce, A.; José-Yacamán, M., Structural analysis of AuPdAu nanocubes via aberration-corrected STEM and nanobeam diffraction, J. Phys. Chem. C, 119, 24621-24626 (2015)
[41] Lurie, A. I., Spatial Problems of Theory of Elasticity (1955), State Publishing House of Scientific and Technical Literature: State Publishing House of Scientific and Technical Literature Moscow, (in Russian)
[42] Matthews, J. W.; Blakeslee, A. E., Defects in epitaxial multilayers: I. Misfit dislocations, J. Cryst. Growth, 27, 118-125 (1974)
[43] Mélinon, P.; Begin-Colin, S.; Duvail, J. L.; Gauffre, F.; Boime, N. H.; Ledoux, G.; Plain, J.; Reiss, P.; Silly, F.; Warot-Fonrose, B., Engineered inorganic core/shell nanoparticles, Phys. Rep., 543, 163-197 (2014)
[44] Mura, T., Micromechanics of Defects in Solids (1987), Martinus Nijhoff Publishers: Martinus Nijhoff Publishers Netherland
[45] Nathanson, M.; Kanhaiya, K.; Pryor, A.; Miao, J. W.; Heinz, H., Atomic-scale structure and stress release mechanism in core-shell nanoparticles, ACS Nano, 12, 12296-12304 (2018)
[46] Nguyen, V. L.; Ohtaki, M.; Matsubara, T.; Cao, M. T.; Nogami, M., New experimental evidences of Pt-Pd bimetallic nanoparticles with core-shell configuration and highly fine-ordered nanostructures by high-resolution electron transmission microscopy, J. Phys. Chem. C, 116, 12265-12274 (2012)
[47] Quarta, A.; Piccirillo, C.; Mandriota, G.; Di Corato, R., Nanoheterostructures (NHS) and their applications in nanomedicine: focusing on in vivo studies, Materials, 12, 1-37 (2019), 139
[48] Sneed, B. T.; Young, A. P.; Tsung, C. K., Building up strain in colloidal metal nanoparticle catalysts, Nanoscale, 7, 12248-12265 (2015)
[49] Trusov, L. I.; Tanakov, M. Yu.; Gryaznov, V. G.; Kaprelov, A. M.; Romanov, A. E., Relaxation of elastic stresses in overlayed microcrystals, J. Cryst. Growth, 114, 133-140 (1991)
[50] Van der Merwe, J. H., Misfit dislocation generation in epitaxial layers, Crit. Rev. Solid State Mater. Sci., 17, 187-209 (1991)
[51] Vdovin, V. I., Misfit dislocations in epitaxial heterostructures: mechanisms of generation and multiplication, Phys. Status Solidi A, 171, 239-250 (1999)
[52] Walker, J. S.; Rees, N. V.; Mendes, P. M., Progress towards the ideal core@shell nanoparticle for fuel cell electrocatalysis, J. Exp. Nanosci., 13, 258-271 (2018)
[53] Wang, C.; Meloni, M. M.; Wu, X.; Zhuo, M.; He, T.; Wang, J.; Wang, C.; Dong, P., Magnetic plasmonic particles for SERS-based bacteria sensing: a review, AIP Adv., 9 (2019), 010701-1 - 010701-17
[54] Zaleska-Medynska, A.; Marchelek, M.; Diak, M.; Grabowska, E., Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties, Adv. Colloid Interface Sci., 229, 80-107 (2016)
[55] Zhang, N.; Liu, S.; Xu, Y. J., Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst, Nanoscale, 4, 2227-2238 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.