×

On manifolds with infinitely many fillable contact structures. (English) Zbl 1475.53085

Summary: We introduce the notion of asymptotically finitely generated contact structures, which states essentially that the Symplectic Homology in a certain degree of any filling of such contact manifolds is uniformly generated by only finitely many Reeb orbits. This property is used to generalize a famous result by Ustilovsky: We show that in a large class of manifolds (including all unit cotangent bundles and all Weinstein fillable contact manifolds with torsion first Chern class) each carries infinitely many exactly fillable contact structures. These are all different from the ones constructed recently by Lazarev. Along the way, the construction of Symplectic Homology is made more general. Moreover, we give a detailed exposition of Cieliebak’s Invariance Theorem for subcritical handle attaching, where we provide explicit Hamiltonians for the squeezing on the handle.

MSC:

53D10 Contact manifolds (general theory)
53D40 Symplectic aspects of Floer homology and cohomology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abbondandolo, A. and Schwarz, M., On the Floer homology of cotangent bundles, Comm. Pure Appl. Math.59 (2005) 254-316. · Zbl 1084.53074
[2] Abouzaid, M., Symplectic cohomology and viterbo’s theorem, in Free Loop Spaces in Geometry and Topology, , Vol. 24 (Europe Mathematical Society, Zrich, 2015), pp. 271-485. · Zbl 1385.53078
[3] Abouzaid, M. and Seidel, P., An open string analogue of viterbo functoriality, Geom. Topol.14(2) (2010) 627-718. · Zbl 1195.53106
[4] N. Bourbaki, Éléments de Mathématiques, Livre 2, Algèbre, Algèbre linéaire. Diffusion CCLS, Paris, 1962. · Zbl 0142.00102
[5] F. Bourgeois, A Morse-Bott approach to Contact Homology, PhD thesis, Stanford University (2002). · Zbl 1046.57017
[6] Bourgeois, F. and Oancea, A., Symplectic homology, autonomous Hamiltonians and Morse-Bott moduli spaces, Duke Math. J.146 (2009) 71-174. · Zbl 1158.53067
[7] Bourgeois, F. and Oancea, A., \( S^1\)-equivariant symplectic homology and linearized contact homology, Int. Math. Res. Notices (2017). · Zbl 1405.53123
[8] Brieskorn, E., Beispiele zur Differentialtopologie von Singularitäten, Invent. Math.2 (1966) 1-14. · Zbl 0145.17804
[9] Cieliebak, K., Handle attaching in symplectic homology and the chord conjecture, J. Eur. Math. Soc. (JEMS)4 (2002) 115-142. · Zbl 1012.53066
[10] Cieliebak, K. and Frauenfelder, U., A Floer homology for exact contact embeddings, Pacific J. Math.239 (2009) 251-316. · Zbl 1221.53112
[11] Cieliebak, K., Frauenfelder, U. and Oancea, A., Rabinowitz-Floer homology and symplectic homology, Annales scientifiques de l’ENS Ser. 443(6) (2010) 957-1015. · Zbl 1213.53105
[12] K. Cieliebak and A. Oancea, Symplectic homology and the Eilenberg-Steenrod axioms, arXiv:1511.00485v1. · Zbl 1392.53093
[13] Duistermaat, J. J., On the Morse index in variational calculus, Advances in Math.21 (1976) 173-195. · Zbl 0361.49026
[14] Eilenberg, S. and Steenrod, N., Foundations of Algebraic Topology (Princeton University Press, Princeton, N.J., 1952). · Zbl 0047.41402
[15] Espina, J., On the mean Euler characteristic of contact manifolds, Int. J. Math.25 (2014) arXiv:10.1142/S0129167X14500463. · Zbl 1298.53091
[16] Fauck, A., Rabinowitz-Floer homology on Brieskorn spheres, Int. Math. Res. Notices14 (2015) 5874-5906, arXiv:10.1093/imrn/rnu109. · Zbl 1334.53092
[17] A. Fauck, Rabinowitz-Floer homology on Brieskorn manifolds, PhD thesis, Humboldt-Universität zu Berlin (2016), arXiv:urn:nbn:de:kobv:11-100238399.
[18] Floer, A., The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math.41 (1988) 775-813. · Zbl 0633.53058
[19] Frauenfelder, U., The Arnold-Givental conjecture and moment Floer homology, Int. Math. Res. Notices, 42 (2004) 2179-2269. · Zbl 1088.53058
[20] Geiges, H., Applications of contact surgery, Topology36(6) (1997) 1193-1220. · Zbl 0912.57019
[21] Geiges, H., An Introduction to Contact Topology (Cambridge University Press, Cambridge, 2008). · Zbl 1153.53002
[22] Gutt, J., Generalized Conley-Zehnder index, Annales de la facult des sciences de Toulouse Mathmatiques23(4) (2014) 907-932. · Zbl 1330.37020
[23] Gutt, J., The positive equivariat symplectic homology as an invarian for some cntact manifolds, J. Sympl. Geom.15(4) (2017) 1019-1069. · Zbl 1388.53095
[24] Hatcher, A., Algebraic Topology (Cambridge University Press, Cambridge, 2002). · Zbl 1044.55001
[25] Kervaire, M. and Milnor, J., Groups of homotopy spheres: IAnn. of Math.77 (1963) 504-537. · Zbl 0115.40505
[26] Kwon, M. and van Koert, O., Brieskorn manifolds in contact topology, Bull. London Math. Soc.48 (2016) 173-241. · Zbl 1336.57002
[27] Laudenbach, F., Symplectic geometry and Floer homology, Ensaios Mathemáticos (Soc. Bras. de Math.)7 (2004) 1-50. · Zbl 1070.53055
[28] Lazarev, O., Contact manifolds with flexible fillings, Geom. Funct. Anal.30 (2020) 188-254. · Zbl 1436.53055
[29] Lutz, R. and Meckert, C., Structures de contact sur certaines sphères exotiques, C. R. Acad. Sci. Paris Sér. A-B282 (1976) A591-A593. · Zbl 0326.53044
[30] M. McLean, Symplectic Topology of Stein Manifolds, PhD thesis, University of Cambridge (2008).
[31] McLean, M., Local Floer homology and infinitely many simple Reeb orbits, Alg. & Geom. Top.12 (2012) 1901-1923. · Zbl 1253.53078
[32] Morita, S., A topological classification of complex structures on \(S^1\times \operatorname{\Sigma}^{2 n - 1} \), Topology14 (1975) 13-22. · Zbl 0301.57010
[33] Ritter, A., Topological quantum field theory structure on symplectic cohomology, J. Topol.6(3) (2013) 391-489. · Zbl 1298.53093
[34] Robbin, J. W. and Salamon, D. A., The Maslov index for paths, Topology32 (1993) 827-844. · Zbl 0798.58018
[35] Salamon, D., Lectures on Floer Homology, Symplectic Geometry and Topology (1999) pp. 143-229. · Zbl 1031.53118
[36] Salamon, D. A. and Zehnder, E., Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math.45 (1992) 1303-1360. · Zbl 0766.58023
[37] Seidel, P., A biased view of symplectic cohomology, Current Developments in Math.2006 (2008) 211-253. · Zbl 1165.57020
[38] Uebele, P., Symplectic homology of some Brieskorn manifolds, Math. Z.283 (2016) 243-274. · Zbl 1344.53061
[39] I. Ustilovsky, Contact homology and contact structures on \(S^{4 m + 1}\), PhD thesis, Stanford University (1999). · Zbl 1034.53080
[40] Ustilovsky, I., Infinitely many contact structures on \(S^{4 m + 1}\), Int. Math. Res. Notices14 (1999) 781-791. · Zbl 1034.53080
[41] O. van Koert, Open books for contact five-manifolds and applications of contact homology, PhD thesis, Universität zu Köln (2005). · Zbl 1303.53006
[42] Viterbo, C., Functors and computations in Floer homology with applications, i. GAFA Geom. Funct. Anal.9 (1999) 985-1033W. · Zbl 0954.57015
[43] J. Weber, J-holomorphic curves in cotangent bundles and the heat flow, PhD thesis, Technische Universitt Berlin (1999). · Zbl 0954.53047
[44] Weber, J., Perturbed closed geodesics are periodic orbits: Index and transversality, Math. Z.241 (2002) 45-82. · Zbl 1037.53060
[45] Weinstein, A., Contact surgery and symplectic handlebodies, Hokkaido Math. J.20 (1991) 241-251. · Zbl 0737.57012
[46] Yau, M.-L., Cylindrical contact homology of subcritical Stein-fillable contact manifolds, Geom. Topol.8 (2004) 1243-1280. · Zbl 1055.57036
[47] Zhou, Z., Vanishing of symplectic homology and obstruction to flexible fillability, Int. Math. Res. Not.14 (2018).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.