Correlation based imaging for rotating satellites. (English) Zbl 1474.78006


78A45 Diffraction, scattering
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
35R30 Inverse problems for PDEs
49N30 Problems with incomplete information (optimization)
78M35 Asymptotic analysis in optics and electromagnetic theory
78M99 Basic methods for problems in optics and electromagnetic theory
Full Text: DOI arXiv


[1] N. Bleistein, J. W. Stockwell, Jr., and J. K. Cohen, Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion, Springer, 2001. · Zbl 0967.86001
[2] L. Borcea and J. Garnier, High-Resolution Interferometric Synthetic Aperture Imaging in Scattering Media, preprint, https://arxiv.org/abs/1907.02514, 2019. · Zbl 1434.35263
[3] L. Borcea, J. Garnier, G. Papanicolaou, K. Solna, and C. Tsogka, Resolution analysis of passive synthetic aperture imaging of fast moving objects, SIAM J. Imaging Sci., 10 (2017), pp. 665-710, https://doi.org/10.1137/16M109716X. · Zbl 1364.78013
[4] J. Choi, J. H. Jo, M.-J. Kim, D.-G. Roh, S.-Y. Park, H.-J. Lee, M. Park, et al., Determining the rotation periods of an inactive LEO satellite and the first Korean space debris on GEO, KOREASAT 1, J. Astronom. Space Sci., 33 (2016), pp. 127-135.
[5] J. Fournier, J. Garnier, G. Papanicolaou, and C. Tsogka, Matched-filter and correlation-based imaging for fast moving objects using a sparse network of receivers, SIAM J. Imaging Sci., 10 (2017), pp. 2165-2216, https://doi.org/10.1137/17M112364X. · Zbl 1434.78017
[6] J. Garnier and G. Papanicolaou, Correlation based virtual source imaging in strongly scattering media, Inverse Problems, 28 (2012), 075002. · Zbl 1260.65090
[7] J. Garnier and G. Papanicolaou, Passive Imaging with Ambient Noise, Cambridge University Press, 2016. · Zbl 1352.86001
[8] J. Garnier, G. Papanicolaou, A. Semin, and C. Tsogka, Signal-to-noise ratio analysis in virtual source array imaging, SIAM J. Imaging Sci., 8 (2015), pp. 248-279, https://doi.org/10.1137/140968677. · Zbl 1323.35229
[9] J. A. Haimerl and G. P. Fonder, Space fence system overview, in Proceedings of the 16th Advanced Maui Optical and Space Surveillance Technology Conference, Curran Associates, Inc., 2015.
[10] D. J. Kessler and B. G. Cour-Palais, Collision frequency of artificial satellites: The creation of a debris belt, J. Geophys. Res., 83 (1978), pp. 2637-2646.
[11] M. E. Lawrence, C. T. Hansen, S. P. Deshmukh, and B. C. Flickinger, Characterization of the effects of atmospheric lensing in SAR images, in Radar Sensor Technology XIII, Orlando, FL, Proc. SPIE 7308, 73080C.
[12] M. Leibovich, G. Papanicolaou, and C. Tsogka, Generalized correlation-based imaging for satellites, SIAM J. Imaging Sci., 13 (2020), pp. 1331-1366, https://doi.org/10.1137/20M1322789. · Zbl 1451.78020
[13] M. Mahmud, S. U. Qaisar, and C. Benson, Tracking low Earth orbit small debris with GPS satellites as bistatic radar, in Proceedings of the 17th Advanced Maui Optical and Space Surveillance Technology Conference, Maui, HI, Curran Associates, Inc., 2016, 18.
[14] R. W. McMillan, Atmospheric turbulence effects on radar systems, in Proceedings of the IEEE 2010 National Aerospace & Electronics Conference, Fairborn, OH, 2010, pp. 181-196.
[15] J. Šilha, J.-N. Pittet, M. Hamara, and T. Schildknecht, Apparent rotation properties of space debris extracted from photometric measurements, Adv. Space Res., 61 (2018), pp. 844-861.
[16] C. Solodyna, Overview of wideband radar imaging technology at MIT Lincoln Laboratory, in Perspectives in Space Surveillance, R. Sridharan and A. F. Pensa, eds., MIT Press, 2017, pp. 75-117.
[17] M. T. Valley, S. P. Kearney, and M. Ackermann, Small Space Object Imaging: LDRD Final Report, Sandia National Laboratories, 2009.
[18] K. Wormnes, R. Le Letty, L. Summerer, R. Schonenborg, O. Dubois-Matra, E. Luraschi, A. Cropp, H. Kragg, and J. Delaval, ESA technologies for space debris remediation, in Proceedings of the 6th European Conference on Space Debris, Darmstadt, Germany, 2013.
[19] T. Yanagisawa and H. Kurosaki, Shape and motion estimate of LEO debris using light curves, Adv. Space Res., 50 (2012), pp. 136-145.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.