Effect of peculiar velocities on the gravitational potential in cosmological models with perfect fluids. (English) Zbl 1473.83087

Summary: We consider a universe filled with perfect fluid with the constant equation of state parameter \(\omega\). In the theory of scalar perturbations, we study the effect of peculiar velocities on the gravitational potential. For radiation with \(\omega = 1/3\), we obtain the expression for the gravitational potential in the integral form. Numerical calculation clearly demonstrates the modulation of the gravitational potential by acoustic oscillations due to the presence of peculiar velocities. We also show that peculiar velocities affect the gravitational potential in the case of the frustrated network of cosmic strings with \(\omega = - 1/3\).


83F05 Relativistic cosmology
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76E20 Stability and instability of geophysical and astrophysical flows
76Q05 Hydro- and aero-acoustics


Full Text: DOI arXiv


[1] Bardeen, J. M., Gauge-invariant cosmological perturbations, Phys. Rev. D, 22, 1882 (1980)
[2] Peebles, P. J.E., The Large-Scale Structure of the Universe (1980), Princeton University Press: Princeton University Press Princeton · Zbl 1422.85005
[3] Mukhanov, V. F.; Feldman, H. A.; Brandenberger, R. H., Theory of cosmological perturbations, Phys. Rep., 215, 203 (1992)
[4] Mukhanov, V. F., Physical Foundations of Cosmology (2005), Cambridge University Press: Cambridge University Press Cambridge
[5] Durrer, R., The Cosmic Microwave Background (2008), Cambridge University Press: Cambridge University Press Cambridge
[6] Gorbunov, D. S.; Rubakov, V. A., Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (2011), World Scientific: World Scientific Singapore · Zbl 1246.83007
[7] Landau, L. D.; Lifshitz, E. M., The Classical Theory of Fields, Course of Theoretical Physics Series, vol. 2 (2000), Oxford Pergamon Press: Oxford Pergamon Press Oxford · Zbl 0178.28704
[8] Eingorn, M.; Zhuk, A., Hubble flows and gravitational potentials in observable universe, J. Cosmol. Astropart. Phys., 09, Article 026 pp. (2012)
[9] Eingorn, M.; Zhuk, A., Remarks on mechanical approach to observable universe, J. Cosmol. Astropart. Phys., 05, Article 024 pp. (2014)
[10] Eingorn, M., First-order cosmological perturbations engendered by pointlike masses, Astrophys. J., 825, 84 (2016)
[11] Brilenkov, R.; Eingorn, M., Second-order cosmological perturbations engendered by point-like masses, Astrophys. J., 845, 153 (2017)
[12] Eingorn, M.; Guran, N. D.; Zhuk, A., Analytic expressions for the second-order scalar perturbations in the ΛCDM universe within the cosmic screening approach, Phys. Dark Universe, 26, Article 100329 pp. (2019)
[13] Eingorn, M.; Brilenkov, R., Perfect fluids with \(\omega = \text{const}\) as sources of scalar cosmological perturbations, Phys. Dark Universe, 17, 63 (2017)
[14] Eingorn, M.; Kiefer, C.; Zhuk, A., Scalar and vector perturbations in a universe with discrete and continuous matter sources, J. Cosmol. Astropart. Phys., 09, Article 032 pp. (2016)
[15] Eingorn, M.; Kiefer, C.; Zhuk, A., Cosmic screening of the gravitational interaction, Int. J. Mod. Phys. D, 26, Article 1743012 pp. (2017)
[16] Canay, E.; Eingorn, M., Duel of cosmological screening lengths, Phys. Dark Universe, 29, Article 100565 pp. (2020)
[17] Oldham, K. B.; Myland, J.; Spanier, J., An Atlas of Functions with Equator, the Atlas Function Calculator (2009), Spinger: Spinger New York · Zbl 1167.65001
[18] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover Books on Mathematics (1964), Dover Publications: Dover Publications New York · Zbl 0171.38503
[19] Bucher, M.; Spergel, D. N., Is the dark matter a solid?, Phys. Rev. D, 60, Article 043505 pp. (1999)
[20] Battye, R. A.; Carter, B.; Chachoua, E.; Moss, A., Rigidity and stability of cold dark solid universe model, Phys. Rev. D, 72, Article 023503 pp. (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.