×

On the hydrodynamic description of holographic viscoelastic models. (English) Zbl 1473.83082

Summary: We show that the correct dual hydrodynamic description of homogeneous holographic models with spontaneously broken translations must include the so-called “strain pressure” – a novel transport coefficient proposed recently. Taking this new ingredient into account, we investigate the near-equilibrium dynamics of a large class of holographic models and faithfully reproduce all the hydrodynamic modes present in the quasinormal mode spectrum. Moreover, while strain pressure is characteristic of equilibrium configurations which do not minimise the free energy, we argue and show that it also affects models with no background strain, through its temperature derivatives. In summary, we provide a first complete matching between the holographic models with spontaneously broken translations and their effective hydrodynamic description.

MSC:

83F05 Relativistic cosmology
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76E20 Stability and instability of geophysical and astrophysical flows
81R40 Symmetry breaking in quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Halperin, B. I.; Nelson, D. R., Theory of two-dimensional melting, Phys. Rev. Lett., 41, 121-124 (1978)
[2] Martin, P. C.; Parodi, O.; Pershan, P. S., Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids, Phys. Rev. A, 6, 2401-2420 (1972)
[3] Delacrétaz, L. V.; Goutéraux, B.; Hartnoll, S. A.; Karlsson, A., Theory of hydrodynamic transport in fluctuating electronic charge density wave states, Phys. Rev. B, 96, 19, Article 195128 pp. (2017)
[4] Donos, A.; Martin, D.; Pantelidou, C.; Ziogas, V., Hydrodynamics of broken global symmetries in the bulk, J. High Energy Phys., 10, Article 218 pp. (2019) · Zbl 1427.83080
[5] Armas, J.; Jain, A., Viscoelastic hydrodynamics and holography (2019) · Zbl 1434.83119
[6] Donos, A.; Martin, D.; Pantelidou, C.; Ziogas, V., Incoherent hydrodynamics and density waves (2019)
[7] Grozdanov, S.; Poovuttikul, N., Generalized global symmetries in states with dynamical defects: the case of the transverse sound in field theory and holography, Phys. Rev. D, 97, 10, Article 106005 pp. (2018)
[8] Ammon, M.; Baggioli, M.; Jiménez-Alba, A., A unified description of translational symmetry breaking in holography, J. High Energy Phys., 09, Article 124 pp. (2019) · Zbl 1423.83067
[9] Ammon, M.; Baggioli, M.; Gray, S.; Grieninger, S., Longitudinal sound and diffusion in holographic massive gravity, J. High Energy Phys., 10, Article 064 pp. (2019)
[10] Amoretti, A.; Areán, D.; Goutéraux, B.; Musso, D., DC resistivity of quantum critical, charge density wave states from gauge-gravity duality, Phys. Rev. Lett., 120, 17, Article 171603 pp. (2018)
[11] Amoretti, A.; Areán, D.; Goutéraux, B.; Musso, D., Universal relaxation in a holographic metallic density wave phase, Phys. Rev. Lett., 123, 21, Article 211602 pp. (2019)
[12] Davison, R. A.; Schalm, K.; Zaanen, J., Holographic duality and the resistivity of strange metals, Phys. Rev. B, 89, 24, Article 245116 pp. (2014)
[13] Delacrétaz, L. V.; Goutéraux, B.; Hartnoll, S. A.; Karlsson, A., Bad metals from fluctuating density waves, SciPost Phys., 3, 3, Article 025 pp. (2017)
[14] Vegh, D., Holography without translational symmetry (2013)
[15] Andrade, T.; Withers, B., A simple holographic model of momentum relaxation, J. High Energy Phys., 05, Article 101 pp. (2014)
[16] Baggioli, M.; Pujolas, O., Electron-phonon interactions, metal-insulator transitions, and holographic massive gravity, Phys. Rev. Lett., 114, 25, Article 251602 pp. (2015)
[17] Alberte, L.; Baggioli, M.; Khmelnitsky, A.; Pujolas, O., Solid holography and massive gravity, J. High Energy Phys., 02, Article 114 pp. (2016) · Zbl 1388.83559
[18] Donos, A.; Gauntlett, J. P., Holographic Q-lattices, J. High Energy Phys., 04, Article 040 pp. (2014)
[19] Amoretti, A.; Areán, D.; Goutéraux, B.; Musso, D., Effective holographic theory of charge density waves, Phys. Rev. D, 97, 8, Article 086017 pp. (2018)
[20] Andrade, T.; Baggioli, M.; Krikun, A.; Poovuttikul, N., Pinning of longitudinal phonons in holographic spontaneous helices, J. High Energy Phys., 02, Article 085 pp. (2018) · Zbl 1387.81298
[21] Andrade, T.; Krikun, A., Coherent vs incoherent transport in holographic strange insulators, J. High Energy Phys., 05, Article 119 pp. (2019) · Zbl 1416.83096
[22] Chaikin, P.; Lubensky, T., Principles of Condensed Matter Physics (2000), Cambridge University Press
[23] Baggioli, M.; Grieninger, S., Zoology of solid & fluid holography — Goldstone modes and phase relaxation, J. High Energy Phys., 10, Article 235 pp. (2019)
[24] Alberte, L.; Ammon, M.; Baggioli, M.; Jiménez-Alba, A.; Pujolàs, O., Holographic phonons (2017)
[25] Amoretti, A.; Areán, D.; Goutéraux, B.; Musso, D., Diffusion and universal relaxation of holographic phonons, J. High Energy Phys., 10, Article 068 pp. (2019)
[26] Amoretti, A.; Areán, D.; Goutéraux, B.; Musso, D., Gapless and gapped holographic phonons (2019)
[27] Hartnoll, S. A.; Kovtun, P. K.; Muller, M.; Sachdev, S., Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes, Phys. Rev. B, 76, Article 144502 pp. (2007)
[28] Caldarelli, M. M.; Christodoulou, A.; Papadimitriou, I.; Skenderis, K., Phases of planar AdS black holes with axionic charge, J. High Energy Phys., 04, Article 001 pp. (2017) · Zbl 1378.83031
[29] Donos, A.; Gauntlett, J. P., On the thermodynamics of periodic AdS black branes, J. High Energy Phys., 10, Article 038 pp. (2013) · Zbl 1342.83360
[30] Esposito, A.; Garcia-Saenz, S.; Nicolis, A.; Penco, R., Conformal solids and holography, J. High Energy Phys., 12, Article 113 pp. (2017) · Zbl 1383.81208
[31] Baggioli, M.; Castillo, V. C.; Pujolas, O., Scale invariant solids (2019)
[32] Nicolis, A.; Penco, R.; Piazza, F.; Rattazzi, R., Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff, J. High Energy Phys., 06, Article 155 pp. (2015) · Zbl 1388.83042
[33] Alberte, L.; Ammon, M.; Baggioli, M.; Jiménez, A.; Pujolàs, O., Black hole elasticity and gapped transverse phonons in holography, J. High Energy Phys., 01, Article 129 pp. (2018) · Zbl 1384.83021
[34] Baggioli, M.; Gran, U.; Alba, A. J.; Tornsö, M.; Zingg, T., Holographic plasmon relaxation with and without broken translations, J. High Energy Phys., 09, Article 013 pp. (2019)
[35] Alberte, L.; Baggioli, M.; Pujolas, O., Viscosity bound violation in holographic solids and the viscoelastic response, J. High Energy Phys., 07, Article 074 pp. (2016) · Zbl 1390.83150
[36] Andrade, T.; Baggioli, M.; Pujolàs, O., Viscoelastic dynamics in holography (2019)
[37] Baggioli, M.; Grieninger, S.; Soltanpanahi, H., Nonlinear oscillatory shear tests in viscoelastic holography (2019)
[38] Skenderis, K., Lecture notes on holographic renormalization, Class. Quantum Gravity, 19, 5849-5876 (2002) · Zbl 1044.83009
[39] Donos, A.; Gauntlett, J. P.; Ziogas, V., Diffusion for holographic lattices, J. High Energy Phys., 03, Article 056 pp. (2018)
[40] Ammon, M.; Grieninger, S.; Jimenez-Alba, A.; Macedo, R. P.; Melgar, L., Holographic quenches and anomalous transport, J. High Energy Phys., 09, Article 131 pp. (2016)
[41] Grieninger, S., Holographic quenches and anomalous transport (2016)
[42] Donos, A.; Gauntlett, J. P., Black holes dual to helical current phases, Phys. Rev. D, 86, Article 064010 pp. (2012)
[43] Baggioli, M.; Buchel, A., Holographic viscoelastic hydrodynamics (2018) · Zbl 1414.81254
[44] Donos, A.; Pantelidou, C., Holographic transport and density waves, J. High Energy Phys., 05, Article 079 pp. (2019)
[45] Private communication with Keun-Young Kim and Hyun-Sik Jeong.
[46] Armas, J.; Jain, A., Hydrodynamics for charge density waves and their holographic duals (2020)
[47] Baggioli, M., Are the homogeneous holographic viscoelastic models quasicrystals? (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.