The entropic quasi-de Sitter instability time from the distance conjecture. (English) Zbl 1473.83014

Summary: From the entropy argument for the dS swampland conjecture which connects the Gibbons-Hawking entropy bound with the distance conjecture, we find the entropic quasi-dS instability time given by \(1/(\sqrt{\epsilon_H}H)\log( m_{\mathrm{Pl}}/H)\) as the lifetime of quasi-dS spacetime. It depends on the slow-roll parameter, and contains the logarithmic factor \(\log( m_{\mathrm{Pl}}/H)\) which can be found in the scrambling (or decoherence) time as well. Such a logarithmic factor enhances the geodesic distance of the modulus from the mere Planck scale, and also possibly relaxes the bound on \(m_{\mathrm{Pl}}^2 \nabla^2 V/V\).


83C15 Exact solutions to problems in general relativity and gravitational theory
76E20 Stability and instability of geophysical and astrophysical flows
28D20 Entropy and other invariants
Full Text: DOI arXiv


[1] Brennan, T. D.; Carta, F.; Vafa, C., PoS TASI, 2017, Article 015 pp. (2017)
[2] Palti, E., Fortschr. Phys., 67, 6, Article 1900037 pp. (2019)
[3] Obied, G.; Ooguri, H.; Spodyneiko, L.; Vafa, C.
[4] Ooguri, H.; Palti, E.; Shiu, G.; Vafa, C., Phys. Lett. B, 788, 180 (2019)
[5] Bousso, R., J. High Energy Phys., 9907, Article 004 pp. (1999)
[6] Ooguri, H.; Vafa, C., Nucl. Phys. B, 766, 21 (2007)
[7] Gibbons, G. W.; Hawking, S. W., Phys. Rev. D, 15, 2738 (1977)
[8] Seo, M. S., Phys. Lett. B, 797, Article 134904 pp. (2019)
[9] For the discussion regarding the connection between the distance conjecture and the dS entropy, see, for example, .
[10] Geng, H.; Grieninger, S.; Karch, A., J. High Energy Phys., 1906, Article 105 pp. (2019)
[11] Geng, H.
[12] Seo, M. S., Phys. Rev. D, 99, 10, Article 106004 pp. (2019)
[13] Dvali, G.; Gomez, C.; Zell, S., J. Cosmol. Astropart. Phys., 1706, Article 028 pp. (2017)
[14] Hayden, P.; Preskill, J., J. High Energy Phys., 0709, Article 120 pp. (2007)
[15] Sekino, Y.; Susskind, L., J. High Energy Phys., 0810, Article 065 pp. (2008)
[16] Bedroya, A.; Vafa, C.
[17] Nomura, Y., J. High Energy Phys., 1111, Article 063 pp. (2011)
[18] Gong, J. O.; Seo, M. S., J. High Energy Phys., 1905, Article 021 pp. (2019)
[19] Zurek, W. H.; Paz, J. P., Phys. Rev. Lett., 72, 2508 (1994)
[20] Cheung, C.; Creminelli, P.; Fitzpatrick, A. L.; Kaplan, J.; Senatore, L., J. High Energy Phys., 0803, Article 014 pp. (2008)
[21] Prokopec, T.; Rigopoulos, G., Phys. Rev. D, 82, Article 023529 pp. (2010)
[22] Gong, J. O.; Seo, M. S.; Shiu, G., J. High Energy Phys., 1607, Article 099 pp. (2016)
[23] Nelson, E., J. Cosmol. Astropart. Phys., 1603, Article 022 pp. (2016)
[24] Scalisi, M.; Valenzuela, I., J. High Energy Phys., 08, Article 160 pp. (2019)
[25] Andriot, D., Phys. Lett. B, 785, 570 (2018)
[26] Garg, S. K.; Krishnan, C.
[27] Martin, J.; Brandenberger, R. H., Phys. Rev. D, 63, Article 123501 pp. (2001)
[28] For the attempt to connect the distance conjecture to the trans-Planckian censorship conjecture, see [29].
[29] Brahma, S.
[30] A. Bedroya, private communication.
[31] Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J., J. High Energy Phys., 1302, Article 062 pp. (2013)
[32] Veneziano, G., J. High Energy Phys., 0206, Article 051 pp. (2002)
[33] Dvali, G., Fortschr. Phys., 58, 528 (2010)
[34] Brustein, R., Phys. Rev. Lett., 84, 2072 (2000)
[35] Cai, R. G.; Wang, S. J.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.