Invariant Gibbs dynamics for the dynamical sine-Gordon model. (English) Zbl 1473.35363

Summary: In this note, we study the hyperbolic stochastic damped sine-Gordon equation (SdSG), with a parameter \(\beta^2 > 0\), and its associated Gibbs dynamics on the two-dimensional torus. After introducing a suitable renormalization, we first construct the Gibbs measure in the range \(0 < \beta^2 < 4 \pi\) via the variational approach due to N. Barashkov and M. Gubinelli [Duke Math. J. 169, No. 17, 3339–3415 (2020; Zbl 07292332)]. We then prove almost sure global well-posedness and invariance of the Gibbs measure under the hyperbolic SdSG dynamics in the range \(0 < \beta^2 < 2 \pi\). Our construction of the Gibbs measure also yields almost sure global well-posedness and invariance of the Gibbs measure for the parabolic sine-Gordon model in the range \(0 < \beta^2 < 4 \pi\).


35L71 Second-order semilinear hyperbolic equations
35L20 Initial-boundary value problems for second-order hyperbolic equations
35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)


Zbl 07292332
Full Text: DOI arXiv


[1] Barashkov, N. and Gubinelli, M.. Variational approach to Euclidean QFT. arXiv:1805.10814 [math.PR]. · Zbl 07292332
[2] Barone, A., Esposito, F., Magee, C. and Scott, A.. Theory and applications of the sine-Gordon equation. Rivista del Nuovo Cimento1 (1971), 227-267.
[3] Bényi, Á., Oh, T. and Pocovnicu, O.. On the probabilistic Cauchy theory for nonlinear dispersive PDEs. In Landscapes of time-frequency analysis. Applied and Numerical Harmonic Analysis, pp. 1-32 (Cham: Birkhäuser/Springer, 2019). · Zbl 1418.35389
[4] Bourgain, J.. Periodic nonlinear Schrödinger equation and invariant measures. Comm. Math. Phys. 166 (1994), 1-26. · Zbl 0822.35126
[5] Bourgain, J.. Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Comm. Math. Phys. 176 (1996), 421-445. · Zbl 0852.35131
[6] Chandra, A., Hairer, M. and Shen, H.. The dynamical sine-Gordon model in the full subcritical regime. arXiv:1808.02594 [math.PR].
[7] Da Prato, G. and Debussche, A.. Strong solutions to the stochastic quantization equations. Ann. Probab. 31 (2003), 1900-1916. · Zbl 1071.81070
[8] Da Prato, G. and Zabczyk, J.. Stochastic equations in infinite dimensions. In Encyclopedia of mathematics and its applications, vol. 152, 2nd edn (Cambridge: Cambridge University Press, 2014), xviii+493pp. · Zbl 1317.60077
[9] Friedlander, L.. An invariant measure for the equation u_tt − u_xx + u^3 = 0. Comm. Math. Phys. 98 (1985), 1-16. · Zbl 0576.35082
[10] Fröhlich, J.. Classical, quantum statistical mechanics in one and two dimensions, two-component Yukawa- and Coulomb systems. Comm. Math. Phys. 47 (1976), 233-268. · Zbl 1092.82505
[11] Garban, C.. Dynamical Liouville. J. Funct. Anal. 278 (2020), 108351. · Zbl 1432.81035
[12] Gatto, A. E.. Product rule and chain rule estimates for fractional derivatives on spaces that satisfy the doubling condition. J. Funct. Anal. 188 (2002), 27-37. · Zbl 1031.43005
[13] Ginibre, J. and Velo, G.. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133 (1995), 50-68. · Zbl 0849.35064
[14] Gubinelli, M., Imkeller, P. and Perkowski, N.. Paracontrolled distributions and singular PDEs. Forum Math. Pi3 (2015), e6, 75pp. · Zbl 1333.60149
[15] Gubinelli, M., Koch, H. and Oh, T.. Renormalization of the two-dimensional stochastic nonlinear wave equation. Trans. Am. Math. Soc. 370 (2018), 7335-7359. · Zbl 1400.35240
[16] Gubinelli, M., Koch, H. and Oh, T.. Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity. arXiv:1811.07808 [math.AP].
[17] Gubinelli, M., Koch, H., Oh, T. and Tolomeo, L.. Global dynamics for the two-dimensional stochastic nonlinear wave equations. arXiv:2005.10570 [math.AP]
[18] Gunaratnam, T. S., Oh, T., Tzvetkov, N. and Weber, H.. Quasi-invariant Gaussian measures for the nonlinear wave equation in three dimensions. arXiv:1808.03158 [math.PR].
[19] Hairer, M.. A theory of regularity structures. Invent. Math. 198 (2014), 269-504. · Zbl 1332.60093
[20] Hoshino, M., Kawabi, H. and Kusuoka, S.. Stochastic quantization associated with the exp (Φ)_2-quantum field model driven by space-time white noise on the torus. J. Evol. Equ. (2020). https://doi.org/10.1007/s00028-020-00583-0. · Zbl 1467.35269
[21] Hairer, M. and Shen, H.. The dynamical sine-Gordon model. Comm. Math. Phys. 341 (2016), 933-989. · Zbl 1336.60120
[22] Keel, M. and Tao, T.. Endpoint Strichartz estimates. Am. J. Math. 120 (1998), 955-980. · Zbl 0922.35028
[23] Killip, R., Stovall, B. and Visan, M.. Blowup behaviour for the nonlinear Klein-Gordon equation. Math. Ann. 358 (2014), 289-350. · Zbl 1290.35227
[24] Lacoin, H., Rhodes, R. and Vargas, V.. Complex Gaussian multiplicative chaos. Comm. Math. Phys. 337 (2015), 569-632. · Zbl 1322.60065
[25] Lacoin, H., Rhodes, R. and Vargas, V.. A probabilistic approach of ultraviolet renormalisation in the boundary Sine-Gordon model. arXiv:1903.01394 [math.PR].
[26] Mckean, H. P.. The sine-Gordon and sinh-Gordon equations on the circle. Comm. Pure Appl. Math. 34 (1981), 197-257. · Zbl 0467.35078
[27] Mckean, H. P. and Vaninsky, K. L.. Statistical mechanics of nonlinear wave equations. In Trends and perspectives in applied mathematics, Appl. Math. Sci., vol. 100, pp. 239-264 (New York: Springer, 1994). · Zbl 0811.35171
[28] Oh, T.. White noise for KdV and mKdV on the circle. In Harmonic analysis and nonlinear partial differential equations, RIMS Kôkyûroku Bessatsu, vol. B18, 99-124 (Kyoto: Res. Inst. Math. Sci. (RIMS), 2010). · Zbl 1211.35243
[29] Oh, T. and Okamoto, M.. Comparing the stochastic nonlinear wave and heat equations: a case study. arXiv:1908.03490 [math.AP]. · Zbl 1469.35270
[30] Oh, T., Okamoto, M. and Robert, T.. A remark on triviality for the two-dimensional stochastic nonlinear wave equation. Stochastic Process. Appl130 (2020), 5838-5864. · Zbl 1448.35587
[31] Oh, T., Okamoto, M. and Tzvetkov, N.. Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation, preprint.
[32] Oh, T., Robert, T., Sosoe, P. and Wang, Y.. On the two-dimensional hyperbolic stochastic sine-Gordon equation. Stoch. Partial Differ. Equ. Anal. Comput. (2020), 32p. https://doi.org/10.1007/s40072-020-00165-8. · Zbl 1470.35450
[33] Oh, T., Robert, T. and Tzvetkov, N.. Stochastic nonlinear wave dynamics on compact surfaces. arXiv:1904.05277 [math.AP].
[34] Oh, T., Robert, T. and Wang, Y.. On the parabolic and hyperbolic Liouville equations. arXiv:1908.03944 [math.AP].
[35] Oh, T. and Thomann, L.. A pedestrian approach to the invariant Gibbs measure for the 2-d defocusing nonlinear Schrödinger equations. Stoch. Partial Differ. Equ. Anal. Comput. 6 (2018), 397-445. · Zbl 1421.35340
[36] Perring, J. and Skyrme, T.. A model unified field equation. Nuclear Phys. 31 (1962), 550-555. · Zbl 0106.20105
[37] Revuz, D. and Yor, M.. Continuous martingales and Brownian motion. In Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol. 293, 3rd edn (Berlin: Springer-Verlag, 1999), xiv+602pp. · Zbl 0917.60006
[38] Ryang, S., Saito, T. and Shigemoto, K.. Canonical stochastic quantization. Progr. Theor. Phys. 73 (1985), 1295-1298. · Zbl 0979.81514
[39] Tolomeo, L.. Global well-posedness of the two-dimensional stochastic nonlinear wave equation on an unbounded domain. arXiv:1912.08667 [math.AP]. · Zbl 1467.35221
[40] Tzvetkov, N.. Invariant measures for the defocusing nonlinear Schrödinger equation. Ann. Inst. Fourier (Grenoble)58 (2008), 2543-2604. · Zbl 1171.35116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.