×

Computational algorithm for investigation large elastoplastic deformations with contact interaction. (English) Zbl 1472.74201

Summary: The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformations of solids the solutions of contact problems are derived. The algorithm has been based on the equation of the principle of virtual work in velocity terms. Contact interaction is modeled over the basis of the master-slave approach with penalty method. The closest point projection procedure is used to find the contact area. For the solution of the nonlinear system of equations incremental method is applied. The numerical implementation is based on the finite element method.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74M15 Contact in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Golovanov, A. I., Numerical modeling of large deformations of elastoplastic solids in terms of logarithms of principal stretches, Comput. Continuum Mech., 4, 25-35 (2011)
[2] Rogovoi, A. A., Kinematics of finite-strain elastic-inelastic deformation, J. Appl. Mech. Tech. Phys., 49, 136-141 (2008) · Zbl 1271.74041
[3] Bazhenov, V. G.; Baranova, M. S.; Kibets, A. I.; Lomunov, V. K.; Pavlenkova, E. V., “Buckling of elastic-plastic cylindrical and conical shells of revolution under axial impact loading,” Uch. Zap. Kazan. Univ., Ser. Fiz.-, Mat. Nauki, 152, 86-105 (2010)
[4] Simo, J. S.; Miehe, C., Associative coupled termoplasticity at finite strains: Formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Eng., 98, 41-104 (1992) · Zbl 0764.73088
[5] Basar, Y.; Eckstein, A., Large inelastic strain analysis by multilayer shell elements, Acta Mech., 141, 225-252 (2000) · Zbl 0989.74064
[6] Yang, B.; Laursen, T. A., A large deformation mortar formulation of self contact with finite sliding, Comput. Methods Appl. Mech. Eng., 197, 756-772 (2008) · Zbl 1169.74513
[7] Neto, D. M.; Oliveira, M. C.; Menezes, L. F., Surface smoothing procedures in computational contact mechanics, Arch. Comput. Methods Eng., 24, 37-87 (2017) · Zbl 1360.74122
[8] Wriggers, P., Computational Contact Mechanics (2002), UK: Wiley, UK · Zbl 1104.74002
[9] Wriggers, P., Finite element algorithms for contact problems, Arch. Comput. Methods Eng., 24, 1-49 (1995)
[10] Laursen, T. A., Convected description in large deformation frictional contact problems, Int. J. Solids Struct., 31, 669-681 (1994) · Zbl 0793.73088
[11] Laursen, T. A., Computational Contact and Impact Mechanics (2002), Berlin: Springer, Berlin · Zbl 0996.74003
[12] Neto, D. M.; Oliveira, M. C.; Menezes, L. F., Surface smoothing procedures in computational contact mechanics, Arch. Comput. Methods Eng., 24, 37-87 (2017) · Zbl 1360.74122
[13] Konyukhov, A.; Schweizerhof, K., Computational Contact Mechanics—Geometrically Exact Theory for Arbitrary Shaped Bodies (2012), Heidelberg: Springer, Heidelberg · Zbl 1264.74001
[14] Simo, J. S.; Laursen, T. A., An augmented lagrangian treatment of contact problems involving friction, Comput. Struct., 42, 97-116 (1992) · Zbl 0755.73085
[15] Lee, E., Elastic-plastic deformation at finite strains, J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603
[16] Simo, J. S., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation, Comput. Methods Appl. Mech. Eng., 66, 199-219 (1988) · Zbl 0611.73057
[17] Miehe, C., A theory of large-strain isotropic thermoplastisity based on metric transformation tensor, Arch. Appl. Mech., 66, 45-64 (1995) · Zbl 0844.73027
[18] Eidel, B.; Gruttmann, F., Elastoplastic orthotropy at finite strains: Multiplicative formulation and numerical implementation, Comput. Mater. Sci., 28, 732-742 (2003)
[19] Schröder, J.; Gruttmann, F.; Löblein, J., A simple orthotropic finite elasto-plasticity model based on generalized stress-strain measures, Comput. Mech., 30, 48-64 (2002) · Zbl 1058.74025
[20] Sultanov, L. U., “Analysis of finite elastic-plastic deformations: Kinematics and constitutive equations,” Uch. Zap. Kazan. Univ., Ser. Fiz.-, Mat. Nauki, 157, 158-165 (2015)
[21] Sultanov, L. U., “Analysis of large elastic-plastic deformations: Integration algorithm and numerical examples,” Uch. Zap. Kazan. Univ., Ser. Fiz.-, Mat. Nauki, 159, 509-517 (2017)
[22] Golovanov, A. I.; Sultanov, L. U., Postbuckling elastoplastic state analysis of three-dimensional bodies taking into account finite strains, Russ. Aeronaut., 51, 362-368 (2008)
[23] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis (1997), U.S.A.: Cambridge Univ. Press, U.S.A. · Zbl 0891.73001
[24] Davydov, R. L.; Sultanov, L. U., Numerical algorithm of solving the problem of large elastic-plastic deformation by FEM, PNRPU Mech. Bull., 1, 82-93 (2013)
[25] Abdrakhmanova, A. I.; Sultanov, L. U., “Numerical investigation of nonlinear deformations with contact interaction,” Uch. Zap. Kazan. Univ., Ser. Fiz.-, Mat. Nauki, 160, 423-434 (2018)
[26] Al-Dojayli, M.; Meguid, S. A., Accurate modeling of contact using cubic splines, Finite Elem. Anal. Des., 38, 337-352 (2002) · Zbl 0996.65014
[27] Burago, N. G.; Zhuravlev, A. B.; Nikitin, I. S., Analysis of stress state of GTE contact system ‘disk-blade’, Comput. Continuum Mech., 4, 5-16 (2011)
[28] Badriev, I. B.; Paimushin, V. N., Refined models of contact interaction of a thin plate with positioned on both sides deformable foundations, Lobachevskii J. Math., 38, 779-793 (2017) · Zbl 1457.74115
[29] Parisch, H., A formulation of arbitrarily shaped surface elements for three dimensional large deformation contact with friction, Int. J. Numer. Methods Eng., 40, 3313-3324 (1997) · Zbl 1049.74784
[30] Puso, M. A., A 3D contact smoothing method using Gregory patches, Int. J. Numer. Methods Eng., 54, 1161-1194 (2002) · Zbl 1098.74711
[31] Oden, J. T., Finite Elements of Nonlinear Continua (1972), New York: McGraw-Hill, New York · Zbl 0235.73038
[32] Izi, R.; Konyukhov, A.; Schweizerhof, K., Large penetration algorithm for 3D frictionless contact problems based on a covariant form, Comput. Methods Appl. Mech. Eng., 217-220, 186-196 (2012) · Zbl 1253.74063
[33] Puso, M. A.; Laursen, T. A.; Solberg, J., A segment-to-segment mortar contact method for quadratic elements and large deformations, Comput. Methods Appl. Mech. Eng., 197, 555-566 (2008) · Zbl 1169.74627
[34] Yang, B.; Laursen, T. A.; Meng, X., Two dimensional mortar contact methods for large deformation frictional sliding, Int. J. Numer. Methods Eng., 62, 1183-1225 (2005) · Zbl 1161.74497
[35] Chernykh, K. F., Nonlinear Theory of Elasticity in Machine-Building Calculations (1986), Leningrad: Mashinostroenie, Leningrad
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.