×

Coupled electrochemical-mechanical modeling with strain gradient plasticity for lithium-ion battery electrodes. (English) Zbl 1472.74054

Summary: We first present a model coupling the electrochemical reaction with strain gradient plasticity for a spherical electrode, which aims to analyze the evolutions and distributions of electrochemical-reaction dislocations and diffusion-induced stress during lithiation process. Several critical features viewed by in-situ TEM are incorporated into this model, such as the two-phase boundary and high-density dislocations at the reaction front. It is shown that the microstructure evolution can impact the mechanical properties and electrochemical performances of electrode materials. The results obtained by a finite difference method indicate that, as lithiation proceeds, the circumferential stress on the surface of the lithiated shell changes from compression to tensile stress, which may cause fracture of the active materials. Especially, the electrochemical-reaction dislocation zone results in fairly large stresses at the front of the interface. Furthermore, the lithiation reaction displays a strong size effect, and the movement rate of reaction front reduces as the size of the particles decreases. This work provides a framework for large-capacity, multi-scale research on high-capacity lithium-ion battery electrodes.

MSC:

74E40 Chemical structure in solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type
74S20 Finite difference methods applied to problems in solid mechanics
78A55 Technical applications of optics and electromagnetic theory

Software:

ReaxFF
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Acharya, A.; Beaudoin, A. J., Grain-size effect in viscoplastic polycrystals at moderate strains, J. Mech. Phys. Solid., 48, 10, 2213-2230 (2000) · Zbl 0958.74013
[2] Ardeljan, M.; Beyerlein, I. J.; Knezevic, M., A dislocation density based crystal plasticity finite element model: application to a two-phase polycrystalline HCP/BCC composites, J. Mech. Phys. Solid., 66, 16-31 (2014)
[3] Arsenlis, A.; Parks, D. M., Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density, Acta Mater., 47, 5, 1597-1611 (1999)
[4] Asaro, R. J.; Needleman, A., Overview no. 42 texture development and strain hardening in rate dependent polycrystals, Acta Metall., 33, 6, 923-953 (1985)
[5] Ashby, M. F., The deformation of plastically non-homogeneous materials, Philos. Mag. A, 21, 170, 399-424 (1970)
[6] Bassani, J. L., Incompatibility and a simple gradient theory of plasticity, J. Mech. Phys. Solid., 49, 9, 1983-1996 (2001) · Zbl 1030.74015
[7] Braun, P. V.; Cook, J. B., Deterministic design of chemistry and mesostructure in Li-ion battery electrodes, ACS Nano, 12, 3060-3064 (2018)
[8] Bucci, G.; Nadimpalli, S. P.V.; Sethuraman, V. A.; Bower, A. F.; Guduru, P. R., Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation, J. Mech. Phys. Solid., 62, 276-294 (2014)
[9] Chen, B.; Zhou, J.; Zhu, J., Diffusion induced stress and the distribution of dislocations in a nanostructured thin film electrode during lithiation, RSC Adv., 4, 109, 64216-64224 (2014)
[10] Chen, B.; Zhou, J.; Zhu, J.; Liu, T., Effect of misfit dislocation on Li diffusion and stress in a phase transforming spherical electrode, J. Electrochem. Soc., 162, 8, H493-H500 (2015)
[11] Chen, S. H.; Feng, B., Size effect in mocro-scale cantilever beam bending, Acta Mech., 219, 3-4, 291-307 (2011) · Zbl 1333.74057
[12] Chen, L.; Fan, F.; Hong, L.; Chen, J.; Ji, Y. Z.; Zhang, S. L.; Zhu, T.; Chen, L. Q., A phase-field model coupled with large elasto-plastic deformation: application to lithiated silicon electrodes, J. Electrochem. Soc., 161, F3164-F3172 (2014)
[13] Chon, M. J.; Sethuraman, V. A.; Mccormick, A.; Srinivasan, V.; Guduru, P. R., Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon, Phys. Rev. Lett., 107, 4, Article 045503 pp. (2011)
[14] Ebner, M.; Marone, F.; Stampanoni, M.; Wood, V., Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries, Science, 342, 6159, 716-720 (2013)
[15] Fleck, N. A.; Hutchinson, J. W., A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solid., 41, 12, 1825-1857 (2001) · Zbl 0791.73029
[16] Gao, H.; Huang, Y., Geometrically necessary dislocation and size-dependent plasticity, Scripta Mater., 48, 2, 113-118 (2003)
[17] Gao, H.; Huang, Y.; Nix, W. D.; Hutchinson, J. W., Mechanism-based strain gradient plasticity — I. Theory, J. Mech. Phys. Solid., 47, 6, 1239-1263 (1999) · Zbl 0982.74013
[18] Gu, M.; Yang, H.; Perea, D. E.; Zhang, J. G.; Zhang, S.; Wang, C. M., Bending-induced symmetry breaking of lithiation in germanium nanowires, Nano Lett., 14, 8, 4622-4627 (2014)
[19] Huang, J.; Gao, H.; Nix, W. D., Mechanism-based strain gradient plasticity — II. Analysis, J. Mech. Phys. Solid., 48, 1, 99-128 (2000) · Zbl 0990.74016
[20] Huang, J.; Liu, X.; Liu, Y.; Kushima, A.; Li, J.; Zhu, T., In-situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures, Microsc. Microanal., 18, S2, 1326-1327 (2012)
[21] Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q., In situ observation of the electrochemical lithiation of a single SnO_2 nanowire electrode, Science, 330, 6010, 1515-1520 (2010)
[22] Huang, S.; Fan, F.; Li, J.; Zhang, S.; Zhu, T., Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries, Acta Mater., 61, 12, 4354-4364 (2013)
[23] Huang, Y.; Xue, Z.; Gao, H.; Nix, W. D.; Xia, Z. C., A study of microindentation hardness tests by mechanism-based strain gradient plasticity, J. Mater. Res., 15, 8, 1786-1796 (2000)
[24] Kang, B.; Ceder, G., Battery materials for ultrafast charging and discharging, Nature, 458, 7235, 190-193 (2009)
[25] Khosrownejad, S. M.; Curtin, W. A., Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials, J. Mech. Phys. Solid., 94, 167-180 (2016)
[26] Kim, S.; Choi, S. J.; Zhao, K.; Yang, H.; Gobbi, G.; Zhang, S.; Li, J., Electrochemically driven mechanical energy harvesting, Nat. Commun., 7, 10146 (2016)
[27] Kocks, U. F., The relation between polycrystal deformation and single-crystal deformation, Metall. Mater. Trans. B, 1, 5, 1121-1143 (1970)
[28] Kok, S.; Beaudoin, A. J.; Tortorelli, D. A., On the development of stage IV hardening using a model based on the mechanical threshold, Acta Mater., 50, 7, 1653-1667 (2002)
[29] Kok, S.; Beaudoin, A. J.; Tortorelli, D. A., A polycrystal plasticity model based on the mechanical threshold, Int. J. Plast., 18, 5, 715-741 (2002) · Zbl 1050.74559
[30] Kok, S.; Beaudoin, A. J.; Tortorelli, D. A.; Lebyodkin, M., A finite element model for the Portevin-Le Chatelier effect based on polycrystal plasticity, Model. Simulat. Mater. Sci. Eng., 10, 6, 745-763 (2002)
[31] Limthongkul, P.; Jang, Y. I.; Dudney, N. J.; Chiang, Y. M., Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage, Acta Mater., 51, 4, 1103-1113 (2003)
[32] Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A. V., In situ atomic-scale imaging of electrochemical lithiation in silicon, Nat. Nanotechnol., 7, 11, 749-756 (2012)
[33] Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K., High-performance anode materials for rechargeable lithium-ion batteries, Electrochem. Energy Rev., 1, 1, 35-53 (2018)
[34] Luscher, D. J.; Mayeur, J. R.; Mourad, H. M.; Hunter, A.; Kenamond, M. A., Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions, Int. J. Plast., 76, 111-129 (2016)
[35] Ma, Z.; Wu, H.; Wang, Y.; Pan, Y.; Lu, C., An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries, Int. J. Plast., 88, 188-203 (2017)
[36] Ma, Z. S.; Xie, Z. C.; Wang, Y.; Zhang, P. P.; Pan, Y.; Zhou, Y. C.; Lu, C., Failure modes of hollow core-shell structural active materials during the lithiation-delithiation process, J. Power Sources, 290, 114-122 (2015)
[37] Mcdowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C.; Nix, W. D.; Cui, Y., In situ TEM of two-phase lithiation of amorphous silicon nanospheres, Nano Lett., 13, 2, 758-764 (2013)
[38] Mukaibo, H.; Momma, T.; Shacham-Diamand, Y.; Osaka, T.; Kodaira, M., In situ stress transition observations of electrodeposited Sn-based anode materials for lithium-ion secondary batteries, Electrochem. Solid State Lett., 10, 3, A70-A73 (2007)
[39] Nielsen, K. L.; Niordson, C. F., A numerical basis for strain-gradient plasticity theory: rate-independent and rate-dependent formulations, J. Mech. Phys. Solid., 63, 113-127 (2014) · Zbl 1303.74010
[40] Nix, W. D.; Gao, H., Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solid., 46, 3, 411-425 (1998) · Zbl 0977.74557
[41] Ostadhossein, A.; Cubuk, E. D.; Tritsaris, G. A.; Kaxiras, E.; Zhang, S.; van Duin, A. C., Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF, Phys. Chem. Chem. Phys., 17, 5, 3832-3840 (2015)
[42] Pañeda, E. M., On fracture in finite strain gradient plasticity, Int. J. Plast., 80, 154-167 (2016)
[43] Pharr, M.; Yong, S. C.; Lee, D.; Oh, K. H.; Vlassak, J. J., Measurements of stress and fracture in germanium electrodes of lithium-ion batteries during electrochemical lithiation and delithiation, J. Power Sources, 304, 164-169 (2016)
[44] Pyun, S. I.; Go, J. Y.; Jang, T. S., An investigation of intercalation-induced stresses generated during lithium transport through Li_1−δCoO_2 film electrode using a laser beam deflection method, Electrochim. Acta, 49, 25, 4477-4486 (2004)
[45] Rosa, A. J.; Da, S. E.; Tostes, M. A., Modeling damage and fracture within strain-gradient plasticity, Int. J. Solid Struct., 59, 208-215 (2015)
[46] Sethuraman, V. A.; Chon, M. J.; Shimshak, M.; Srinivasan, V.; Guduru, P. R., In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation, J. Power Sources, 195, 15, 5062-5066 (2011)
[47] Sheldon, B. W.; Soni, S. K.; Xiao, X.; Qi, Y., Stress contributions to solution thermodynamics in Li-Si alloys, Electrochem. Solid State Lett., 15, 1, A9-A11 (2012)
[48] Suzuki, T.; Takeuchi, S.; Yoshinaga, H., Dislocation Dynamics and Plasticity (1991), Springer: Springer Berlin
[49] Tang, M.; Huang, H. Y.; Meethong, N.; Kao, Y. H.; Carter, W. C.; Chiang, Y. M., Model for the particle size, overpotential, and strain dependence of phase transition pathways in storage electrodes: application to nanoscale olivines, Chem. Mater., 21, 8, 1557-1571 (2009)
[50] Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359-367 (2001)
[51] Taylor, G. I., The mechanism of plastic deformation of crystals. Part I. Theoretical, Proc. Roy. Soc. Lond. A, 145, 855, 362-387 (1934) · JFM 60.0712.02
[52] Tsagrakis, I.; Aifantis, E. C., Thermodynamic coupling between gradient elasticity and a Cahn-Hilliard type of diffusion: size-dependent spinodal gaps, Continuum Mech. Therm., 29, 1181-1194 (2017) · Zbl 1392.74030
[53] Tsagrakis, I.; Aifantis, E. C., Gradient elasticity effects on the two-phase lithiation of lib anodes, Generalized Models and Non-classical Approaches in Complex Materials 2. Advanced Structured Materials, 221-235 (2018), Springer: Springer Cham
[54] Wang, J. W.; He, Y.; Fan, F.; Liu, X. H.; Xia, S.; Liu, Y.; Harris, C. T.; Li, H.; Huang, J. Y.; Mao, S. X., Two-phase electrochemical lithiation in amorphous silicon, Nano Lett., 13, 2, 709-715 (2013)
[55] Xie, Z.; Ma, Z.; Wang, Y.; Zhou, Y.; Lu, C., A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries, RSC Adv., 6, 27, 22383-22388 (2016)
[56] Yang, B.; He, Y. P.; Irsa, J.; Lundgren, C.; Ratchford, J.; Zhao, Y. P., Effects of composition-dependent modulus, finite concentration and boundary constraint on Li-ion diffusion and stresses in a bilayer Cu-coated Si nano-anode, J. Power Sources, 204, 168-176 (2012)
[57] Zhang, S.; Zhao, K.; Zhu, T.; Li, J., Electrochemomechanical degradation of high-capacity battery electrode materials, Prog. Mater. Sci., 89, 479-521 (2017)
[58] Zhao, K.; Pharr, M.; Wan, Q.; Wang, W. L.; Kaxiras, E.; Vlassak, J. J.; Suo, Z., Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries, J. Electrochem. Soc., 159, 3, 238-243 (2012)
[59] Zheng, J. G., Dislocations in nanocrystalline SnO_2 thin films, Phil. Mag. Lett., 73, 3, 93-100 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.