×

A grain boundary model considering the grain misorientation within a geometrically nonlinear gradient-extended crystal viscoplasticity theory. (English) Zbl 1472.74032

Summary: The main goal of the current work is to present a grain boundary model based on the mismatch between adjacent grains in a geometrically nonlinear crystal viscoplasticity framework including the effect of the dislocation density tensor. To this end, the geometrically nonlinear crystal viscoplasticity theory by three of the authors [“A grain boundary model for gradient-extended geometrically nonlinear crystal plasticity: theory and numerics”, Int. J. Plast. 118, 17–35 (2019; doi:10.1016/j.ijplas.2019.01.009)] is extended by a more complex free energy and a geometrical transmissibility parameter is used to evaluate the dislocation transmission at the grain boundaries which includes the orientations of slip directions and slip plane normals. Then, the grain boundary strength is evaluated based on the misorientation between neighbouring grains using the transmissibility parameter. In some examples, the effect of mismatch in adjacent grains on the grain boundary strength, the dislocation transmission at the grain boundaries and the Hall-Petch slope is discussed by a comparison of two-dimensional random-oriented polycrystals and textured polycrystals under shear deformation.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74E20 Granularity
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alipour A, Wulfinghoff S, Bayat HR, Reese S, Svendsen B. 2018 The concept of control points in hybrid discontinuous Galerkin methods-application to gometrically nonlinear crystal plasticity. Int. J. Numer. Methods Eng. 114, 557-579. (doi:10.1002/nme.5754)
[2] Hill R. 1966 Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids 14, 95-102. (doi:10.1016/0022-5096(66)90040-8)
[3] Klusemann B, Svendsen B, Vehoff H. 2012 Investigation of the deformation behavior of Fe-3
[4] Klusemann B, Svendsen B, Vehoff H. 2013 Modeling and simulation of deformation behavior, orientation gradient development and heterogeneous hardening in thin sheets with coarse texture. Int. J. Plast. 50, 109-126. (doi:10.1016/j.ijplas.2013.04.004)
[5] von Mises R. 1913 Mechanics of solid bodies in the plastically-deformable state. Nachrichten von der Koeniglichen Gesellschaft der Wissenschaften Göttingen, Mathematical physics 4, 582-592.
[6] Zhang K, Holmedal B, Hopperstad OS, Dumoulin S, Gawad J, Van Bael A, Van Houtte P. 2015 Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification. Int. J. Plast. 66, 3-30. (doi:10.1016/j.ijplas.2014.02.003)
[7] Aifantis EC. 1984 On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326-330. (doi:10.1115/1.3225725)
[8] Bayerschen E, Stricker M, Wulfinghoff S, Weygand D, Böhlke T. 2015 Equivalent plastic strain gradient plasticity with grain boundary hardening and comparison to discrete dislocation dynamics. Proc. R. Soc. A 471, 20150388. (doi:10.1098/rspa.2015.0388) · Zbl 1371.74059
[9] Cordero NM, Forest S, Busso EP. 2013 Micromorphic modelling of grain size effects in metal polycrystals. GAMM Mitt. 36, 186-202. (doi:10.1002/gamm.201310011) · Zbl 1275.74009
[10] Gurtin ME, Anand L, Lele SP. 2007 Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids 55, 1853-1878. (doi:10.1016/j.jmps.2007.02.006) · Zbl 1170.74013
[11] Wulfinghoff S. 2017 A generalized cohesive zone model and a grain boundary yield criterion for gradient plasticity derived from surface- and interface-related arguments. Int. J. Plast. 92, 57-78. (doi:10.1016/j.ijplas.2017.02.006)
[12] Mu Y, Zhang X, Hutchinson JW, Meng WJ. 2016 Dependence of confined plastic flow of polycrystalline cu thin films on microstructure. MRS Commun. 6, 289-294. (doi:10.1557/mrc.2016.20)
[13] Yao WZ, Krill CE, Albinski B, Schneider HC, You JH. 2014 Plastic material parameters and plastic anisotropy of tungsten single crystal: a spherical micro-indentation study. J. Mater. Sci. 49, 3705-3715. (doi:10.1007/s10853-014-8080-z)
[14] Ziemann M et al. 2015 Deformation patterns in cross-sections of twisted bamboo-structured Au microwires. Acta Mater. 97, 216-222. (doi:10.1016/j.actamat.2015.06.012)
[15] Alipour A, Reese S, Wulfinghoff S. 2019 A grain boundary model for gradient-extended geometrically nonlinear crystal plasticity: theory and numerics. Int. J. Plast. 118, 17-35. (doi:10.1016/j.ijplas.2019.01.009)
[16] Bargmann S, Ekh M, Runesson K, Svendsen B. 2010 Modeling of polycrystals with gradient crystal plasticity: a comparison of strategies. Phil. Mag. 90, 1263-1288. (doi:10.1080/14786430903334332)
[17] Gurtin ME. 2010 A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on the accumulation of geometrically necessary dislocations. Int. J. Plast. 26, 1073-1096. (doi:10.1016/j.ijplas.2010.02.002) · Zbl 1432.74047
[18] Pouriayevali H, Xu BX. 2017 A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model. Contin. Mech. Thermodyn. 29, 1389-1412. (doi:10.1007/s00161-017-0589-3) · Zbl 1392.74018
[19] Hall EO. 1951 The deformation and ageing of mild steel: II characteristics of the Lüders deformation. Proc. Phys. Soc. B 64, 742-747. (doi:10.1088/0370-1301/64/9/302)
[20] Petch NJ. 1953 The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25-28.
[21] Aifantis KE, Deng H, Shibata H, Tsurekawa S, Lejček P, Hackney SA. 2019 Interpreting slip transmission through mechanically induced interface energies: a Fe-3
[22] Gottschalk D, McBride A, Reddy BD, Javili A, Wriggers P, Hirschberger CB. 2016 Computational and theoretical aspects of a grain-boundary model that accounts for grain misorientation and grain-boundary orientation. Comput. Mater. Sci. 111, 443-459. (doi:10.1016/j.commatsci.2015.09.048)
[23] Ekh M, Grymer M, Runesson K, Svedberg T. 2007 Gradient crystal plasticity as part of the computational modelling of polycrystals. Int. J. Numer. Methods Eng. 72, 197-220. (doi:10.1002/nme.2015) · Zbl 1194.74034
[24] Wulfinghoff S, Bayerschen E, Böhlke T. 2013 A gradient plasticity grain boundary yield theory. Int. J. Plast. 51, 33-46. (doi:10.1016/j.ijplas.2013.07.001)
[25] Bayerschen E, McBride A, Reddy B, Böhlke T. 2016 Review on slip transmission criteria in experiments and crystal plasticity models. J. Mater. Sci. 51, 2243-2258. (doi:10.1007/s10853-015-9553-4)
[26] Gemperle A, Zárubová N, Gemperlová J. 2005 Reactions of slip dislocations with twin boundary in Fe-Si bicrystals. J. Mater. Sci. 40, 3247-3254. (doi:10.1007/s10853-005-2693-1)
[27] Zaefferer S, Kuo JC, Zhao Z, Winning M, Raabe D. 2003 On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Mater. 51, 4719-4735. (doi:10.1016/S1359-6454(03)00259-3)
[28] Ashmawi WM, Zikry MA. 2001 Prediction of grain-boundary interfacial mechanisms in polycrystalline materials. ASME J. Eng. Mater. Technol. 124, 88-96. (doi:10.1115/1.1421611)
[29] Gurtin ME. 2008 A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. J. Mech. Phys. Solids 56, 640-662. (doi:10.1016/j.jmps.2007.05.002) · Zbl 1171.74314
[30] Li Z, Hou C, Huang M, Ouyang C. 2009 Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect. Comput. Mater. Sci. 46, 1124-1134. (doi:10.1016/j.commatsci.2009.05.021)
[31] Ma A, Roters F, Raabe D. 2006 On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – theory, experiments, and simulations. Acta Mater. 54, 2181-2194. (doi:10.1016/j.actamat.2006.01.004)
[32] McBride AT, Gottschalk D, Reddy BD, Wriggers P, Javili A. 2016 Computational and theoretical aspects of a grain-boundary model at finite deformations. Technische Mechanik 36, 92-109.
[33] Rezaei S, Jaworek D, Mianroodi JR, Wulfinghoff S, Reese S. 2019 Atomistically motivated interface model to account for coupled plasticity and damage at grain boundaries. J. Mech. Phys. Solids 124, 325-349. (doi:10.1016/j.jmps.2018.10.015)
[34] van Beers P, McShane G, Kouznetsova V, Geers M. 2013 Grain boundary interface mechanics in strain gradient crystal plasticity. J. Mech. Phys. Solids 61, 2659-2679. (doi:10.1016/j.jmps.2013.08.011)
[35] Bieler TR, Eisenlohr P, Zhang C, Phukan HJ, Crimp MA. 2014 Grain boundaries and interfaces in slip transfer. Curr. Opin. Solid State Mater. Sci. 18, 212-226. (doi:10.1016/j.cossms.2014.05.003)
[36] Lee TC, Robertson IM, Birnbaum HK. 1989 Prediction of slip transfer mechanisms across grain boundaries. Scr. Metall. 23, 799-803. (doi:10.1016/0036-9748(89)90534-6)
[37] Luster J, Morris MA. 1995 Compatibility of deformation in two-phase Ti-Al alloys: dependence on microstructure and orientation relationships. Metall. Mater. Trans. A 26, 1745-1756. (doi:10.1007/BF02670762)
[38] Ravi Kumar B. 2010 Influence of crystallographic textures on tensile properties of 316l austenitic stainless steel. J. Mater. Sci. 45, 2598-2605. (doi:10.1007/s10853-010-4233-x)
[39] Hamid M, Lyu H, Schuessler BJ, Wo PC, Zbib HM. 2017 Modeling and characterization of grain boundaries and slip transmission in dislocation density-based crystal plasticity. Crystals 7, 152. (doi:10.3390/cryst7060152)
[40] Shi J, Zikry MA. 2011 Modeling of grain boundary transmission, emission, absorption and overall crystalline behavior in Σ1, Σ3, and Σ17b bicrystals. J. Mater. Res. 26, 1676-1687. (doi:10.1557/jmr.2011.192)
[41] Spearot DE, Sangid MD. 2014 Insights on slip transmission at grain boundaries from atomistic simulations. Curr. Opin. Solid State Mater. Sci. 18, 188-195. (doi:10.1016/j.cossms.2014.04.001)
[42] Livingston JD, Chalmers B. 1957 Multiple slip in bicrystal deformation. Acta Metall. 5, 322-327. (doi:10.1016/0001-6160(57)90044-5)
[43] Werner E, Prantl W. 1990 Slip transfer across grain and phase boundaries author links open overlay panel. Acta Metall. Mater. 38, 533-537. (doi:10.1016/0956-7151(90)90159-E)
[44] Beyerlein IJ et al. 2012 Structure-property-functionality of bimetal interfaces. JOM 64, 1192-1207. (doi:10.1007/s11837-012-0431-0)
[45] Ekh M, Bargmann S, Grymer M. 2011 Influence of grain boundary conditions on modeling of size-dependence in polycrystals. Acta Mech. 218, 103-113. (doi:10.1007/s00707-010-0403-9) · Zbl 1300.74042
[46] Kröner E. 1959 Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273-334. (doi:10.1007/BF00281393) · Zbl 0090.17601
[47] Lee EH. 1969 Elastic-plastic deformation at finite strains. J. Appl. Mech. ASME 36, 1-6. (doi:10.1115/1.3564580) · Zbl 0179.55603
[48] Levkovitch V, Svendsen B. 2006 On the large-deformation- and continuum-based formulation of models for extended crystal plasticity. Int. J. Solids Struct. 43, 7246-7267. (doi:10.1016/j.ijsolstr.2006.05.010) · Zbl 1102.74008
[49] Nye JF. 1953 Some geometrical relations in dislocated crystals. Acta Metall. 1, 153-162. (doi:10.1016/0001-6160(53)90054-6)
[50] Forest S. 2009 Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135, 117-131. (doi:10.1061/(ASCE)0733-9399(2009)135:3(117))
[51] Forest S, Guéninchault N. 2013 Inspection of free energy functions in gradient crystal plasticity. Acta Mech. Sin. 29, 763-772. (doi:10.1007/s10409-013-0088-0) · Zbl 1346.74146
[52] Svendsen B, Bargmann S. 2010 On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58, 1253-1271. (doi:10.1016/j.jmps.2010.06.005) · Zbl 1431.74028
[53] Wulfinghoff S, Forest S, Böhlke T. 2015 Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1-20. (doi:10.1016/j.jmps.2015.02.008) · Zbl 1349.74071
[54] Groma I, Györgyi G, Kocsis B. 2007 Dynamics of coarse grained dislocation densities from an effective free energy. Phil. Mag. 87, 1185-1199. (doi:10.1080/14786430600835813)
[55] Steinmann P, Stein E. 1996 On the numerical treatment and analysis of finite deformation ductile single crystal plasticity. Comput. Methods Appl. Mech. Eng. 129, 235-254. (doi:10.1016/0045-7825(95)00913-2) · Zbl 0860.73020
[56] Simo JC, Hughes TJR. 1998 Computational inelasticity. New York, NY: Springer. · Zbl 0934.74003
[57] Yu H, Xin Y, Wang M, Liu Q. 2018 Hall-Petch relationship in mg alloys: a review. J. Mater. Sci. Technol. 34, 248-256. (doi:10.1016/j.jmst.2017.07.022)
[58] Wyrzykowski JW, Grabski MW. 1986 The Hall-Petch relation in aluminium and its dependence on the grain boundary structure. Phil. Mag. A 53, 505-520. (doi:10.1080/01418618608242849)
[59] Godon A, Creus J, Cohendoz S, Conforto E, Feaugas X, Girault P, Savall C. 2010 Effects of grain orientation on the Hall-Petch relationship in electrodeposited nickel with nanocrystalline grains. Scr. Mater. 62, 403-406. (doi:10.1016/j.scriptamat.2009.11.038)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.