A cosmological study of Einstein-Skyrme model in anisotropic Kantowski-Sachs spacetime using Lie and Noether symmetries. (English) Zbl 1471.83026


83F05 Relativistic cosmology
83C15 Exact solutions to problems in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76E20 Stability and instability of geophysical and astrophysical flows
76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.
70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
17B81 Applications of Lie (super)algebras to physics, etc.
Full Text: DOI


[1] Written, E.; Olive, D., Supersymmetry algebras that include topological charges, Phys. Lett. B, 78, 97, (1987)
[2] Nagaosa, N.; Tokura, Y., Nat. Nanotechnol., 8, 899, (2013)
[3] Banerjee, S.; Rowland, J.; Erten, O.; Randeria, M., Skyrmions in two-dimensional chiral magnets, Phys. Rev. X, 4, 031045, (2014)
[4] Makhankov, V. G.; Rybanov, Y. P.; Sanyuk, V. I., The Skyrme Model: Fundamental Methods Applications, (1993), Springer-Verlag, Berlin, Heidelberg
[5] Benson, K.; Bucher, M., Skyrmions and semilocal strings in cosmology, Nucl. Phys. B, 406, 355, (1993) · Zbl 1006.83504
[6] Skyrme, T., A nonlinear field theory, Proc. R. Soc. London A, 260, 127, (1961) · Zbl 0102.22605
[7] Skyrme, T., A unified field theory of mesons and baryons, Nucl. Phys., 31, 556, (1962)
[8] Manton, N.; Sutcliffe, P., Topological Solutions, (2004), Cambridge University Press, New York
[9] Droz, S.; Heusler, M.; Straumann, N., New black hole solutions with hair, Phys. Lett. B, 268, 371, (1991)
[10] Heusler, M.; Droz, S.; Straumann, N., Phys. Lett. B, 285, 21, (1992)
[11] Luckock, H.; Moss, I., Black holes have skyrmion hair, Phys. Lett. B, 176, 341, (1986)
[12] Ioannidou, T.; Kleihaus, B.; Kunz, J., Spinning gravitating skyrmions, Phys. Lett. B, 643, 213, (2006) · Zbl 1248.83017
[13] Parisi, L.; Radicella, N.; Vilasi, G., Kantowski-Sachs universes sourced by a Skyrme fluid, Phys. Rev. D, 91, 063533, (2015)
[14] Canfora, F.; Giacomini, A.; Pavluchenko, S. A., Cosmological dynamics of gravitating hadron matter, Phys. Rev. D, 90, 043516, (2014)
[15] Paliathanasis, A.; Tsamparlis, M., Exact solution of the Einstein-Skyrme model in a Kantowski-Sachs spacetime, J. Geom. Phys., 114, 1, (2017) · Zbl 1359.83013
[16] G. Bluman and S. Kumei, Symmetries and Differential Equations (Springer-Verlag, N.Y., 1989); H. Stephani, Differential Equations: Their Solutions Using Symmetry (Cambridge University Press, Cambridge, England, 1989); P. J. Olver, Applications of Lie Groups to Differential Equations (Springer, N.Y., 1986).
[17] Capozziello, S.; Darabi, F.; Vernieri, D., Equivalence between Palatini and metric formalisms of \(f(R)\)-gravity by divergence free current, Mod. Phys. Lett. A, 26, 65, (2011) · Zbl 1208.83087
[18] Capozziello, S.; Stabile, A.; Troisi, A., Spherically symmetric solutions in \(f(R)\)-gravity via Noether symmetry approach, Class. Quantum Grav., 24, 2153, (2007) · Zbl 1113.83017
[19] Capozziello, S.; De. Felice, A., \(f(R)\) cosmology by noether’s symmetry, J. Cosmol. Astropart. Phys., 0808, 016, (2008)
[20] Capozziello, S.; Piedipalumbo, E.; Rubano, C.; Scudellaro, P., Noether symmetry approach in phantom quintessence cosmology, Phys. Rev. D, 80, 104030, (2009)
[21] S. Basilakos, M. Tsamparlis and A. Paliathanasis, Using the Noether symmetry approach to probe the nature of dark energy, Phys. Rev. D83 (2011) 103512; A. Paliathanasis, M. Tsamparlis, S. Basilakos and J. D. Barrow, Dynamical analysis in scalar field cosmology, Phys. Rev. D91 (2015) 123535; A. Paliathanasis, M. Tsamparlis and S. Basilakos, Dynamical symmetries and observational constraints in scalar field cosmology, Phys. Rev. D90 (2014) 103524. · Zbl 1359.70083
[22] Canfora, F.; Maeda, H., Hedgehog ansatz and its generalization for self-gravitating skyrmions, Phys. Rev. D, 87, 084049, (2013)
[23] Capozziello, S.; De. Laurentis, M., Noether symmetries in extended gravity quantum cosmology, Int. J. Geom. Methods Mod. Phys., 11, 1460004, (2014) · Zbl 1291.83181
[24] Dutta, S.; Chakraborty, S., A study of phantom scalar field cosmology using Lie and Noether symmetries, Int. J. Mod. Phys. D, 25, 1650051, (2016) · Zbl 1338.70023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.