×

A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures. (English) Zbl 1469.74023

Summary: In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74S05 Finite element methods applied to problems in solid mechanics

Software:

ABAQUS
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] König JA, Maier G (1981) Shakedown analysis of elastoplastic structures: a review of recent developments. Nucl Eng Des 66(1):81-95
[2] Maier G (2001) On some issues in shakedown analysis. J Appl Mech-T ASME 68(5):799-807. https://doi.org/10.1115/1.1379368 · Zbl 1110.74577 · doi:10.1115/1.1379368
[3] Melan E (1938) Ingenieur-Archiv. Zur Plastizität des räumlichen Kontinuums 9(2):116-126
[4] Koiter, WT; Sneddon, JN (ed.); Hill, R. (ed.), General theorems for elastic-plastic solids, No. 1, 167-221 (1960), Amsterdam
[5] König JA (1987) Shakedown of elastic-plastic structures. Elsevier, Amsterdam
[6] Peigney M (2014) Shakedown of elastic-perfectly plastic materials with temperature-dependent elastic moduli. J Mech Phys Solids 71:112-131. https://doi.org/10.1016/j.jmps.2014.06.008 · Zbl 1328.74022 · doi:10.1016/j.jmps.2014.06.008
[7] Zarka, J.; Casier, J.; Nemet-Nasser, S. (ed.), Cyclic loading on an elastoplastic structure, No. 6 (1979), Oxford
[8] Zarka J (1980) Direct analysis of elastic-plastic structures with ‘overlay’ materials during cyclic loading. Int J Numer Meth Eng 15(2):225-235. https://doi.org/10.1002/nme.1620150206 · Zbl 0437.73021 · doi:10.1002/nme.1620150206
[9] Stein E, Zhang GB, Konig JA (1992) Shakedown with nonlinear strain-hardening including structural computation using finite-element method. Int J Plast 8(1):1-31 · Zbl 0766.73026
[10] Pycko S, Maier G (1995) Shakedown theorems for some classes of nonassociative hardening elastic-plastic material models. Int J Plast 11(4):367-395. https://doi.org/10.1016/S0749-6419(95)00004-6 · Zbl 0853.73021 · doi:10.1016/S0749-6419(95)00004-6
[11] Chinh PD (2007) Shakedown theory for elastic plastic kinematic hardening bodies. Int J Plast 23(7):1240-1259. https://doi.org/10.1016/j.ijplas.2006.11.003 · Zbl 1294.74017 · doi:10.1016/j.ijplas.2006.11.003
[12] Polizzotto C (2010) Shakedown analysis for a class of strengthening materials within the framework of gradient plasticity. Int J Plast 26(7):1050-1069. https://doi.org/10.1016/j.ijplas.2010.01.006 · Zbl 1433.74034 · doi:10.1016/j.ijplas.2010.01.006
[13] Weichert D (1986) On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures. Int J Plast 2(2):135-148. https://doi.org/10.1016/0749-6419(86)90009-4 · Zbl 0612.73034 · doi:10.1016/0749-6419(86)90009-4
[14] Gross-Weege J (1990) A unified formulation of statical shakedown criteria for geometrically nonlinear problems. Int J Plast 6(4):433-447. https://doi.org/10.1016/0749-6419(90)90012-4 · doi:10.1016/0749-6419(90)90012-4
[15] Corradi L, Maier G (1974) Dynamic non-shakedown theorem for elastic perfectly-plastic continua. J Mech Phys Solids 22(5):401-413. https://doi.org/10.1016/0022-5096(74)90005-2 · Zbl 0304.73039 · doi:10.1016/0022-5096(74)90005-2
[16] Borino G, Polizzotto C (1996) Dynamic shakedown of structures with variable appended masses and subjected to repeated excitations. Int J Plast 12(2):215-228. https://doi.org/10.1016/S0749-6419(96)00004-6 · Zbl 0858.73044 · doi:10.1016/S0749-6419(96)00004-6
[17] Chen HF, Ponter ARS (2004) A simplified creep-reverse plasticity solution method for bodies subjected to cyclic loading. Eur J Mech a-Solid 23(4):561-577. https://doi.org/10.1016/j.euromechsol.2004.04.003 · Zbl 1060.74014 · doi:10.1016/j.euromechsol.2004.04.003
[18] Klebanov JM, Boyle JT (1998) Shakedown of creeping structures. Int J Solids Struct 35(23):3121-3133. https://doi.org/10.1016/S0020-7683(97)00359-4 · Zbl 0961.74504 · doi:10.1016/S0020-7683(97)00359-4
[19] Ponter ARS (2016) Shakedown limit theorems for frictional contact on a linear elastic body. Eur J Mech A/Solids 60:17-27. https://doi.org/10.1016/j.euromechsol.2016.05.003 · Zbl 1406.74513 · doi:10.1016/j.euromechsol.2016.05.003
[20] Borkowski A, Kleiber M (1980) On a numerical approach to shakedown analysis of structures. Comput Methods Appl Mech Eng 22(1):101-119. https://doi.org/10.1016/0045-7825(80)90053-5 · Zbl 0444.73068 · doi:10.1016/0045-7825(80)90053-5
[21] Zhang Y (1995) An iteration algorithm for kinematic shakedown analysis. Comput Methods Appl Mech Eng 127(1-4):217-226. https://doi.org/10.1016/0045-7825(95)00121-6 · Zbl 0860.73014 · doi:10.1016/0045-7825(95)00121-6
[22] Ponter ARS, Carter KF (1997) Limit state solutions, based upon linear elastic solutions with a spatially varying elastic modulus. Comput Methods Appl Mech Eng 140(3-4):237-258. https://doi.org/10.1016/S0045-7825(96)01104-8 · Zbl 0894.73033 · doi:10.1016/S0045-7825(96)01104-8
[23] Ponter ARS, Carter KF (1997) Shakedown state simulation techniques based on linear elastic solutions. Comput Methods Appl Mech Eng 140(3-4):259-279. https://doi.org/10.1016/S0045-7825(96)01105-X · Zbl 0891.73021 · doi:10.1016/S0045-7825(96)01105-X
[24] Chen HF, Ponter ARS (2001) Shakedown and limit analyses for 3-D structures using the linear matching method. Int J Press Vessels Piping 78(6):443-451. https://doi.org/10.1016/S0308-0161(01)00052-7 · doi:10.1016/S0308-0161(01)00052-7
[25] Casciaro R, Garcea G (2002) An iterative method for shakedown analysis. Comput Methods Appl Mech Eng 191(49-50):5761-5792. https://doi.org/10.1016/S0045-7825(02)00496-6 · Zbl 1083.74513 · doi:10.1016/S0045-7825(02)00496-6
[26] Garcea G, Armentano G, Petrolo S, Casciaro R (2005) Finite element shakedown analysis of two-dimensional structures. Int J Numer Methods Eng 63(8):1174-1202. https://doi.org/10.1002/nme.1316 · Zbl 1084.74052 · doi:10.1002/nme.1316
[27] Spiliopoulos KV, Panagiotou KD (2012) A direct method to predict cyclic steady states of elastoplastic structures. Comput Methods Appl Mech Eng 223:186-198. https://doi.org/10.1016/j.cma.2012.03.004 · Zbl 1253.74020 · doi:10.1016/j.cma.2012.03.004
[28] Spiliopoulos KV, Panagiotou KD (2014) A residual stress decomposition based method for the shakedown analysis of structures. Comput Methods Appl Mech Eng 276:410-430. https://doi.org/10.1016/j.cma.2014.03.019 · Zbl 06927968 · doi:10.1016/j.cma.2014.03.019
[29] Vu DK, Yan AM, Nguyen-Dang H (2004) A primal-dual algorithm for shakedown analysis of structures. Comput Methods Appl Mech Eng 193(42-44):4663-4674. https://doi.org/10.1016/j.cma.2004.03.011 · Zbl 1112.74546 · doi:10.1016/j.cma.2004.03.011
[30] Simon JW, Weichert D (2011) Numerical lower bound shakedown analysis of engineering structures. Comput Methods Appl Mech Eng 200(41-44):2828-2839. https://doi.org/10.1016/j.cma.2011.05.006 · Zbl 1230.74046 · doi:10.1016/j.cma.2011.05.006
[31] Zouain N, Borges L, Silveira JL (2002) An algorithm for shakedown analysis with nonlinear yield functions. Comput Methods Appl Mech Eng 191(23-24):2463-2481. https://doi.org/10.1016/S0045-7825(01)00374-7 · Zbl 1054.74064 · doi:10.1016/S0045-7825(01)00374-7
[32] Christiansen E, Andersen KD (1999) Computation of collapse states with von Mises type yield condition. Int J Numer Methods Eng 46(8):1185-1202 · Zbl 0951.74060
[33] Makrodimopoulos A, Martin CM (2006) Lower bound limit analysis of cohesive-frictional materials using second-order cone programming. Int J Numer Methods Eng 66(4):604-634. https://doi.org/10.1002/nme.1567 · Zbl 1110.74833 · doi:10.1002/nme.1567
[34] Krabbenhoft K, Lyamin AV, Sloan SW (2007) Shakedown of a cohesive-frictional half-space subjected to rolling and sliding contact. Int J Solids Struct 44(11-12):3998-4008. https://doi.org/10.1016/j.ijsolstr.2006.11.001 · Zbl 1124.74035 · doi:10.1016/j.ijsolstr.2006.11.001
[35] Nguyen AD, Hachemi A, Weichert D (2008) Application of the interior-point method to shakedown analysis of pavements. Int J Numer Methods Eng 75(4):414-439. https://doi.org/10.1002/nme.2256 · Zbl 1195.74018 · doi:10.1002/nme.2256
[36] Garcea G, Leonetti L (2011) A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis. Int J Numer Methods Eng 88(11):1085-1111. https://doi.org/10.1002/nme.3188 · Zbl 1242.74115 · doi:10.1002/nme.3188
[37] Simon JW, Weichert D (2012) Shakedown analysis with multidimensional loading spaces. Comput Mech 49(4):477-485. https://doi.org/10.1007/s00466-011-0656-8 · Zbl 1379.74028 · doi:10.1007/s00466-011-0656-8
[38] Liu YH, Zhang XF, Cen ZZ (2005) Lower bound shakedown analysis by the symmetric Galerkin boundary element method. Int J Plast 21(1):21-42. https://doi.org/10.1016/j.ijplas.2004.01.003 · Zbl 1112.74552 · doi:10.1016/j.ijplas.2004.01.003
[39] Ribeiro TSA, Beer G, Duenser C (2008) Efficient elastoplastic analysis with the boundary element method. Comput Mech 41(5):715-732. https://doi.org/10.1007/s00466-007-0227-1 · Zbl 1162.74488 · doi:10.1007/s00466-007-0227-1
[40] Le CV, Nguyen-Xuan H, Askes H, Bordas SPA, Rabczuk T, Nguyen-Vinh H (2010) A cell-based smoothed finite element method for kinematic limit analysis. Int J Numer Methods Eng 83(12):1651-1674. https://doi.org/10.1002/nme.2897 · Zbl 1202.74177 · doi:10.1002/nme.2897
[41] Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. Int J Numer Methods Eng 82(7):917-938. https://doi.org/10.1002/nme.2804 · Zbl 1188.74073 · doi:10.1002/nme.2804
[42] Nguyen-Xuan H, Rabczuk T, Nguyen-Thoi T, Tran TN, Nguyen-Thanh N (2012) Computation of limit and shakedown loads using a node-based smoothed finite element method. Int J Numer Methods Eng 90(3):287-310. https://doi.org/10.1002/nme.3317 · Zbl 1242.74142 · doi:10.1002/nme.3317
[43] Nguyen-Xuan H, Liu GR (2015) An edge-based finite element method (ES-FEM) with adaptive scaled-bubble functions for plane strain limit analysis. Comput Methods Appl Mech Eng 285:877-905. https://doi.org/10.1016/j.cma.2014.12.014 · Zbl 1423.74169 · doi:10.1016/j.cma.2014.12.014
[44] Chen S, Liu Y, Cen Z (2008) Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming. Comput Methods Appl Mech Eng 197(45-48):3911-3921. https://doi.org/10.1016/j.cma.2008.03.009 · Zbl 1194.74514 · doi:10.1016/j.cma.2008.03.009
[45] Yu S, Zhang X, Sloan SW (2016) A 3D upper bound limit analysis using radial point interpolation meshless method and second-order cone programming. Int J Numer Methods Eng. https://doi.org/10.1002/nme.5273 · doi:10.1002/nme.5273
[46] Zhou S, Liu Y, Wang D, Wang K, Yu S (2014) Upper bound shakedown analysis with the nodal natural element method. Comput Mech 54(5):1111-1128. https://doi.org/10.1007/s00466-014-1043-z · Zbl 1311.74135 · doi:10.1007/s00466-014-1043-z
[47] Zhou S, Liu Y, Chen S (2012) Upper bound limit analysis of plates utilizing the C1 natural element method. Comput Mech 50(5):543-561. https://doi.org/10.1007/s00466-012-0688-8 · Zbl 1312.74050 · doi:10.1007/s00466-012-0688-8
[48] Do HV, Nguyen-Xuan H (2017) Limit and shakedown isogeometric analysis of structures based on Bézier extraction. Eur J Mech A/Solids 63:149-164. https://doi.org/10.1016/j.euromechsol.2017.01.004 · Zbl 1406.74629 · doi:10.1016/j.euromechsol.2017.01.004
[49] Heitzer M, Pop G, Staat M (2000) Basis reduction for the shakedown problem for bounded kinematic hardening material. J Global Optim 17(1-4):185-200 · Zbl 1011.74009
[50] Seshadri R (1995) Inelastic evaluation of mechanical and structural components using the generalized local stress strain method of analysis. Nucl Eng Des 153(2-3):287-303. https://doi.org/10.1016/0029-5493(95)90020-9 · doi:10.1016/0029-5493(95)90020-9
[51] Seshadri R, Mangalaramanan SP (1997) Lower bound limit loads using variational concepts: the m(alpha)-method. Int J Press Vessels Pip 71(2):93-106
[52] Mackenzie D, Shi J, Boyle JT (1994) Finite-element modeling for limit analysis by the elastic compensation method. Comput Struct 51(4):403-410 · Zbl 0866.73070
[53] Ponter ARS, Engelhardt M (2000) Shakedown limits for a general yield condition: implementation and application for a Von Mises yield condition. Eur J Mech a-Solid 19(3):423-445. https://doi.org/10.1016/S0997-7538(00)00171-6 · Zbl 0979.74065 · doi:10.1016/S0997-7538(00)00171-6
[54] Boulbibane M, Ponter ARS (2005) Extension of the linear matching method to geotechnical problems. Comput Methods Appl Mech Eng 194(45-47):4633-4650. https://doi.org/10.1016/j.cma.2004.11.009 · Zbl 1090.74053 · doi:10.1016/j.cma.2004.11.009
[55] Chen HF, Ponter ARS (2001) A method for the evaluation of a ratchet limit and the amplitude of plastic strain for bodies subjected to cyclic loading. Eur J Mech a-Solid 20(4):555-571. https://doi.org/10.1016/S0997-7538(01)01162-7 · Zbl 1014.74013 · doi:10.1016/S0997-7538(01)01162-7
[56] Chen HF (2010) Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress. J Press Vess-T ASME 132(1):273-281. https://doi.org/10.1115/1.4000369 · doi:10.1115/1.4000369
[57] Lytwyn M, Chen HF, Ponter ARS (2015) A generalised method for ratchet analysis of structures undergoing arbitrary thermo-mechanical load histories. Int J Numer Methods Eng 104(2):104-124. https://doi.org/10.1002/nme.4924 · Zbl 1352.74098 · doi:10.1002/nme.4924
[58] Barbera D, Chen H, Liu Y, Xuan F (2017) Recent developments of the linear matching method framework for structural integrity assessment. J Press Vessel Technol 139(5):051101-051109. https://doi.org/10.1115/1.4036919 · doi:10.1115/1.4036919
[59] Gokhfeld DA, Charniavsky OF (1980) Limit analysis of structures at thermal cycling, vol 4. Sijthoff & Noordhoff edn, Alphen aan den Rijn, The Netherlands
[60] Leonetti L, Casciaro R, Garcea G (2015) Effective treatment of complex statical and dynamical load combinations within shakedown analysis of 3D frames. Comput Struct 158:124-139. https://doi.org/10.1016/j.compstruc.2015.06.002 · doi:10.1016/j.compstruc.2015.06.002
[61] Frederick C, Armstrong P (1966) Convergent internal stresses and steady cyclic states of stress. J Strain Anal Eng Des 1(2):154-159
[62] Polizzotto C (2003) Variational methods for the steady state response of elastic-plastic solids subjected to cyclic loads. Int J Solids Struct 40(11):2673-2697. https://doi.org/10.1016/S0020-7683(03)00093-3 · Zbl 1051.74542 · doi:10.1016/S0020-7683(03)00093-3
[63] ABAQUS (Dassault Systems, Version 6.14, 2014)
[64] Carvelli V, Cen ZZ, Liu Y, Maier G (1999) Shakedown analysis of defective pressure vessels by a kinematic approach. Arch Appl Mech 69(9-10):751-764 · Zbl 0969.74582
[65] Zhang T, Raad L (2002) An eigen-mode method in kinematic shakedown analysis. Int J Plast 18(1):71-90. https://doi.org/10.1016/S0749-6419(00)00055-3 · Zbl 1035.74011 · doi:10.1016/S0749-6419(00)00055-3
[66] Francois A, Abdelkader H, An LTH, Said M, Tao PD (2007) Application of lower bound direct method to engineering structures. J Global Optim 37(4):609-630 · Zbl 1149.90118
[67] Belytsch T (1972) Plane stress shakedown analysis by finite elements. Int J Mech Sci 14(9):619-625
[68] Zhang G (1992) Einspielen und dessen numerische Behandlung von Flächentragwerken aus ideal plastischem bzw. kinematisch verfestigendem Material. Ph.D. thesis, University Hanover, Germany
[69] Groß-Weege J (1997) On the numerical assessment of the safety factor of elastic-plastic structures under variable loading. Int J Mech Sci 39(4):417-433. https://doi.org/10.1016/S0020-7403(96)00039-2 · Zbl 0891.73051 · doi:10.1016/S0020-7403(96)00039-2
[70] Krabbenhoft K, Lyamin AV, Sloan SW (2007) Bounds to shakedown loads for a class of deviatoric plasticity models. Comput Mech 39(6):879-888. https://doi.org/10.1007/s00466-006-0076-3 · Zbl 1160.74008 · doi:10.1007/s00466-006-0076-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.