×

An equivalence principle between polynomial and simultaneous Diophantine approximation. (English) Zbl 1469.11229

Summary: Mahler partitioned the real numbers into \(S\), \(T\) and \(U\)-numbers subject to the growth of the sequence of Diophantine exponents \((w_n(\zeta))_{n\geq1}\) associated to a real number \(\zeta\). J. F. Koksma [Monatsh. Math. Phys. 48, 176–189 (1939; JFM 65.0180.01)] introduced a similar classification that turned out to be equivalent. We add two more equivalent definitions in terms of classical exponents of Diophantine approximation. One concerns certain natural assumptions on the decay of the sequence \((\lambda_n(\zeta))_{n\geq1}\) related to simultaneous rational approximation to \((\zeta,\zeta^2, \dots,\zeta^n)\). Thereby we obtain a much clearer picture on simultaneous approximation to successive powers of a real number in general. The other variant of Mahler’s classification deals with uniform approximation by algebraic numbers. We further provide various other applications of our underlying method to exponents of Diophantine approximation and metric theory.

MSC:

11J13 Simultaneous homogeneous approximation, linear forms
11J82 Measures of irrationality and of transcendence
11J83 Metric theory

Citations:

JFM 65.0180.01
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] B. ADAMCZEWSKI and Y. BUGEAUD, Mesures de transcendance et aspects quantitatifs de la méthode de Thue-Siegel-Roth-Schmidt, Proc. Lond. Math. Soc. 101 (2010), 1-31. · Zbl 1200.11054
[2] K. ALNIAÇ IK, On U m -numbers, Proc. Amer. Math. Soc. 85 (1982), 499-505. · Zbl 0457.10014
[3] K. ALNIAÇ IK, Y. AVCI and Y. BUGEAUD, On U m numbers with small transcendence measure, Acta Math. Hungar. 99 (2003), 271-277. · Zbl 1050.11067
[4] D. BADZIAHIN and Y. BUGEAUD, On simultaneous rational approximation to a real num-ber and its integral powers II, New York J. Math. 26 (2020), 362-377. · Zbl 1456.11123
[5] A. BAKER and W. M. SCHMIDT, Diophantine approximation and Hausdorff dimension, Proc. London Math. Soc. 21 (1970), 1-11. · Zbl 0206.05801
[6] R. C. BAKER, On approximation with algebraic numbers of bounded degree, Mathematika 23 (1976), 18-31. · Zbl 0327.10034
[7] V. I. BERNIK, Application of the Hausdorff dimension in the theory of Diophantine approx-imations, Acta Arith. 42 (1983), 219-253 (in Russian), English transl. in Amer. Math. Soc. Transl. 140 (1988), 15-44. · Zbl 0655.10051
[8] Y. BUGEAUD, “Approximation by Algebraic Numbers”, Cambridge Tracts in Mathematics, Vol. 160, Cambridge University Press, 2004. · Zbl 1055.11002
[9] Y. BUGEAUD, On simultaneous rational approximation to a real numbers and its integral powers, Ann. Inst. Fourier (Grenoble) 60 (2010), 2165-2182. · Zbl 1229.11100
[10] Y. BUGEAUD and M. LAURENT, Exponents in Diophantine approximation, In: “Diophan-tine Geometry”, CRM Series, Vol. 4, Ed. Norm., Pisa, 2007, 101-121. · Zbl 1229.11098
[11] Y. BUGEAUD and M. LAURENT, Exponents of Diophantine approximation and Sturmian continued fractions, Ann. Inst. Fourier (Grenoble) 55 (2005), 773-804. · Zbl 1155.11333
[12] Y. BUGEAUD and J. SCHLEISCHITZ, On uniform approximation to real numbers, Acta Arith. 175 (2016), 255-268. · Zbl 1356.11042
[13] Y. BUGEAUD and O. TEULIÉ, Approximation d’un nombre réel par des nombres alge-briques de degré donné, Acta Arith. 93 (2000), 77-86. · Zbl 0948.11029
[14] H. DAVENPORT and W. M. SCHMIDT, Approximation to real numbers by algebraic inte-gers, Acta Arith. 15 (1969), 393-416. · Zbl 0186.08603
[15] Y. A. KHINTCHINE, Zur metrischen theorie der diophantischen approximationen, Math. Z. 24 (1926), 706-714. · JFM 52.0183.02
[16] J. F. KOKSMA,Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monatsh. Math. Phys. 48 (1939), 176-189. · JFM 65.0180.01
[17] M. LAURENT, Simultaneous rational approximation to the successive powers of a real num-ber, Indag. Math. 11 (2003), 45-53. · Zbl 1049.11069
[18] W. J. LEVEQUE, On Mahler’s U-numbers, J. London Math. Soc. 28 (1953), 220-229. · Zbl 0053.36203
[19] K. MAHLER, Zur Approximation der Exponentialfunktionen und des Logarithmus I, II, J. Reine Angew. Math. 166 (1932), 118-150. · JFM 58.0207.01
[20] A. MARNAT and N. MOSHCHEVITIN, An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation, arXiv: 1802.03081.
[21] D. ROY, Approximation to real numbers by cubic algebraic integers I, Proc. London Math. Soc. 88 (2004), 42-62. · Zbl 1035.11028
[22] D. ROY, Approximation to real numbers by cubic algebraic integers II, Ann. of Math. (2) 158 (2003), 1081-1087. · Zbl 1044.11061
[23] D. ROY, On simultaneous rational approximations to a real number, its square, and its cube, Acta Arith. 133 (2008), 185-197. · Zbl 1228.11100
[24] D. ROY, A measure of transcendence for singular points on conics, J. Théor. Nombres Bordeaux, to appear arXiv:1809.03642. · Zbl 1459.11152
[25] J. SCHLEISCHITZ, Two estimates concerning classical diophantine approximation con-stants, Publ. Math. Debrecen 84 (2014), 415-437. · Zbl 1324.11046
[26] J. SCHLEISCHITZ, On the spectrum of Diophantine approximation constants, Mathematika 62 (2016), 79-100. · Zbl 1397.11125
[27] J. SCHLEISCHITZ, On uniform approximation to successive powers of a real number, Indag. Math. 28 (2017), 406-423. · Zbl 1420.11098
[28] J. SCHLEISCHITZ, Some notes on the regular graph defined by Schmidt and Summerer and uniform approximation, JP J. Algebra Number Theory Appl. 39 (2017), 115-150. · Zbl 1420.11097
[29] J. SCHLEISCHITZ, Diophantine approximation in prescribed degree, Mosc. Math. J. 18 (2018), 491-516. · Zbl 1444.11152
[30] J. SCHLEISCHITZ Uniform Diophantine approximation and best approximation polynomi-als, Acta Arith. 185 (2018), 249-274. · Zbl 1473.11141
[31] J. SCHLEISCHITZ, An equivalence principle between polynomial and simultaneous Dio-phantine approximation, arXiv:1704.00055. · Zbl 1420.11105
[32] W. M. SCHMIDT, T-numbers do exist, In: “Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69)”, Academic Press, London, 3-26.
[33] W. M. SCHMIDT, Mahler and Koksma classifications of points in R n and C n , Funct. Ap-prox. Comment. Math. 35 (2006), 307-319. · Zbl 1192.11042
[34] W. M. SCHMIDT and L. SUMMERER, Parametric geometry of numbers and applications, Acta Arith. 140 (2009), 67-91. · Zbl 1236.11060
[35] W. M. SCHMIDT and L. SUMMERER, Diophantine approximation and parametric geome-try of numbers, Monatsh. Math. 169 (2013), 51-104. · Zbl 1264.11056
[36] W. M. SCHMIDT and L. SUMMERER, Simultaneous approximation to three numbers, Mosc. J. Comb. Number Theory 3 (2013), 84-107. · Zbl 1301.11058
[37] V. G. SPRINDŽUK, “Mahler”s Problem in Metric Number Theory“, Izdat. ”Nauka i Tehnika”, Minsk, 1967 (in Russian). English translation by B. Volkmann, Translations of Mathematical Monographs, Vol. 25, American Mathematical Society, Providence, R.I., 1969. · Zbl 0181.05502
[38] K. I. TSISHCHANKA, On approximation of real numbers by algebraic numbers of bounded degree, J. Number Theory 123 (2007), 290-314. · Zbl 1200.11050
[39] E. WIRSING, Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math. 206 (1961), 67-77. · Zbl 0097.03503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.