×

Shear flow-driven magnetized Rossby wave dynamics in the Earth’s ionosphere. (English) Zbl 1468.76076

Summary: Taking into account the action of inhomogeneous zonal wind (shear flow), nonlinear dynamic equations describing the propagation of planetary ULF magnetized Rossby waves in the ionospheric D-, E-, and F-layers are obtained and investigated. The influence of existence of charged particles through Hall and Pedersen conductivities on such dynamic equations is studied in detail. It is shown that the existence of shear flow and Pedersen conductivity can be considered as the presence of an external energy source. The possibility of a barotropic instability of the magnetized Rossby waves is shown. Based on the Rayleigh’s theorem, the appropriate stability conditions are defined in case of the ionospheric D- and E-layers. It is indicated that magnetized Rossby waves under the action of shear zonal flow correspond to states with negative energy. Some exponentially localized vortical solutions are found for the ionospheric D- and E-layers.

MSC:

76U65 Rossby waves
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76U60 Geophysical flows
76E20 Stability and instability of geophysical and astrophysical flows
86A10 Meteorology and atmospheric physics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Diamond, PH; Itoh, S-I; Itoh, K.; Hahm, TS, Zonal flows in plasma—a review, Plasma Phys. Control. Fusion, 47, R35-R161 (2005)
[2] Galperin, B.; Sukoriansky, S.; Dikovskaya, N.; Read, PL; Yamazaki, YH; Wordsworth, R., Anisotropic turbulence and zonal jets in rotating flows with a \(\beta \)-effect, Nonlin. Process. Geophys., 13, 83-98 (2006)
[3] Fridman, AM, Prediction and discovery of new structures in spiral galaxies, Phys. Uspekhi, 50, 115-139 (2007)
[4] Gossard, E.; Hooke, W., Waves in the Atmosphere (1975), Amsterdam: Elsevier, Amsterdam
[5] Pedlosky, J., Geophysical Fluid Dynamics (1987), New York: Springer, New York · Zbl 0713.76005
[6] Pedlosky, J., Waves in the Ocean and Atmosphere, Introduction to Wave Dynamics (2003), Berlin: Springer, Berlin
[7] Kamide, Y.; Baumjohann, W., Magnetosphere—Ionosphere Coupling (1993), Heidelberg: Springer, Heidelberg
[8] Lawrence, AR; Jarvis, MJ, Simultaneous observations of planetary waves from 30 to 220 km, J. Atmos. Solar Terr. Phys., 65, 765-777 (2003)
[9] Kamide, Y.; Chian, A., Handbook of the Solar-Terrestrial Environment (2007), Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York
[10] Alperovich, LS; Fedorov, EN, Hydromagnetic Waves in the Magnetosphere and the Ionosphere (2007), Berlin: Springer, Berlin
[11] Satoh, M., Atmospheric Circulation Dynamics and General Circulation Models (2004), Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York · Zbl 1282.86002
[12] Petviashvili, VI; Pokhotelov, OA, Solitary Waves in Plasmas and in the Atmosphere (1992), Reading: Gordon & Breach, Reading · Zbl 0793.76002
[13] Kaladze, TD; Tsamalashvili, LV, Solitary dipole vortices in the Earth’s ionosphere, Phys. Lett. A, 232, 269-274 (1997) · Zbl 1053.86501
[14] Kaladze, TD, Nonlinear vortical structures in the Earth’s ionosphere, Phys. Scr., T75, 153-155 (1998)
[15] Kaladze, TD, Magnetized Rossby waves in the Earth’s ionosphere, Plasma Phys. Rep., 25, 284-287 (1999)
[16] Kaladze, TD; Keshelashvili, IN; Tsamalashvili, LV, Inductive damping of nonlinear solitary Rossby vortices in the ionospheric F-layer, Plasma Phys. Rep., 25, 625-629 (1999)
[17] Kaladze, TD; Aburjania, GD; Kharshiladze, OA; Horton, W.; Kim, Y-H, Theory of magnetized Rossby waves in the ionospheric E layer, J. Geophys. Res., 109, A05302 (2004)
[18] Kaladze, TD; Horton, W., Synoptic-scale nonlinear stationary magnetized Rossby waves in the ionospheric E-layer, Plasma Phys. Rep., 32, 996-1006 (2006)
[19] Cavalieri, DJ; Deland, RJ; Poterna, JA; Gavin, RF, The correlation of VLF propagation variations with atmospheric planetary-scale waves, J. Atmos. Terr. Phys., 36, 561-574 (1974)
[20] Cavalieri, DJ, Traveling planetary-scale waves in the E-region, J. Atmos. Terr. Phys., 38, 965-978 (1976)
[21] Manson, A.H., Meek, C.E., Gregory, J.B.: Winds and waves (10 min-30 day) in the mesosphere and lower thermosphere at Saskatoon \((52^{\circ }\text{N}, 107^{\circ }\text{ W }, \text{ L }=4.3)\) during the year, October 1979 to July 1980. J. Geophys. Res. 86, 9615-9625 (1981)
[22] Zhou, QH; Sulzer, MP; Tepley, CA, An analysis of tidal and planetary waves in the neutral winds and temperature observed at low-latitude E-region heights, J. Geophys. Res., 102, 11491-11505 (1997)
[23] Sharadze, ZS; Mosashvili, NV; Pushkova, GN; Yudovich, LA, Long-period-wave disturbances in E-region of the ionosphere, Geomag. Aeron., 29, 1032-1034 (1989)
[24] Fagundes, PR; Pillat, VG; Bolzan, MJA; Sahai, Y.; Becker-Guedes, F.; Abalde, JR; Azanha, SL; Bittencourt, JA, Observations of F-layer electron density profiles modulated by planetary wave type oscillations in the equatorial ionospheric anomaly region, J. Geophys. Res., 110, A12302 (2005)
[25] Bauer, TM; Baumjohann, W.; Treumann, RA; Sckopke, N.; Luhr, H., Low-frequency waves in the near-earth plasma sheat, J. Geophys. Res., 100, 9605-9617 (1995)
[26] Sorokin, VM, Wavy processes in the ionosphere related to the geomagnetic field, Izvestia Vysshikh Uchebnikh Zavedenii, Radiofizika, 31, 1169-1179 (1988)
[27] Hirooka, T.; Hirota, I., Normal mode Rossby waves observed in the upper stratosphere, part II: second antysimmetric and symmetric modes of zonal wavenumbers 1 and 2, J. Atmos. Sci., 42, 536-548 (1985)
[28] Randel, WJ, A study of planetary waves in the southern winter troposphere and stratosphere, part I: wave structure and vertical propagation, J. Atmos. Sci., 44, 917-935 (1987)
[29] Forbes, JM; Leveroni, S., Quasi 16-day oscillation in the ionosphere, Geophys. Res. Lett., 19, 981-984 (1992)
[30] Williams, CR; Avery, SK, Analysis of long-period waves using the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska. J. Geophys. Res., 97, 20855-20861 (1992)
[31] Lastovicka, J., Observations of tides and planetary waves in the atmosphere-ionosphere system, Adv. Space Res., 20, 1209-1222 (1997)
[32] Smith, AK, Stationary planetary waves in upper mesospheric winds, J. Atmos. Sci., 54, 2129-2145 (1997)
[33] Burmaka, VP; Lysenko, VN; Chernogor, LF; Chernyak, YV, Wave-like processes in the ionospheric F region that accompanied rocket launches from the Baikonur Site, Geomagn. Aeron., 46, 742-759 (2006)
[34] Sharadze, ZS; Japaridze, GA; Kikvilashvili, GB, Wavy disturbances of non-acoustical nature in the middle-latitude ionosphere, Geomag. Aeron., 28, 446-451 (1988)
[35] Kaladze, TD; Wu, DJ; Tsamalashvili, LV; Jandieri, GV, Localized magnetized Rossby structures under zonal shear flow in the ionospheric E-layer, Phys. Lett. A, 365, 140-143 (2007)
[36] Kaladze, TD; Pokhotelov, OA; Stenflo, L.; Rogava, J.; Tsamalashvili, LV; Tsiklauri, M., Zonal flow interaction with Rossby waves in the Earth’s atmosphere: a numerical simulation, Phys. Lett. A, 372, 5177-5180 (2008) · Zbl 1221.86008
[37] Aburjania, GD; Chargazia, KZ; Kharshiladze, OA, Shear flow driven magnetized planetary wave structures in the ionosphere, J. Atmos. Solar Terr. Phys., 72, 971-981 (2010)
[38] Rayleigh, L., On the stability, or instability of certain fluid motions, Proc. Lond. Math. Soc., 11, 57-70 (1880) · JFM 12.0711.02
[39] Beebe, R., Characteristic zonal winds and long-lived vortices in the atmospheres of the outer planets, Chaos, 4, 113-122 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.