×

Duality results and regularization schemes for Prandtl-Reuss perfect plasticity. (English) Zbl 1468.74007

Summary: We consider the time-discretized problem of the quasi-static evolution problem in perfect plasticity posed in a non-reflexive Banach space. Based on a novel equivalent reformulation in a reflexive Banach space, the primal problem is characterized as a Fenchel dual problem of the classical incremental stress problem. This allows to obtain necessary and sufficient optimality conditions for the time-discrete problems of perfect plasticity. Furthermore, the consistency of a primal-dual stabilization scheme is proven. As a consequence, not only stresses, but also displacements and strains are shown to converge to a solution of the original problem in a suitable topology. The corresponding dual problem has a simpler structure and turns out to be well-suited for numerical purposes. For the resulting subproblems an efficient algorithmic approach in the infinite-dimensional setting based on the semismooth Newton method is proposed.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74S99 Numerical and other methods in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Pure and Applied Mathematics. Elsevier Science (2003).
[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press Oxford (2000). · Zbl 0957.49001
[3] G. Anzellotti and M. Giaquinta, Existence of the displacements field for an elasto-plastic body subject to Hencky’s law and Von Mises yield condition. Manuscr. Math. 32 (1980) 101-136. · Zbl 0465.73022
[4] D.N. Arnold and R. Winther, Mixed finite elements for elasticity. Numer. Math. 92 (2002) 401-419. · Zbl 1090.74051
[5] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis. Dover Books on Mathematics Series. Dover Publications (1984). · Zbl 0641.47066
[6] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities. John Wiley and Sons (1984). · Zbl 0551.49007
[7] S. Bartels and T. Roubiček Numerical approaches to thermally coupled perfect plasticity. Numer. Methods Part. Differ. Eq. 29 (2013) 1837-1863. · Zbl 1277.74021
[8] S. Bartels, A. Mielke and T. Roubiček Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation. SIAM J. Numer. Anal. 50 (2012) 951-976. · Zbl 1248.35105
[9] J.-M.E. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary. Chinese Ann. Math. Ser. B 32 (2011) 823-846. · Zbl 1259.41028
[10] J.-F. Bonnans, J.C. Gilbert, C. Lemaréchal and C.A. Sagastizábal, Numerical Optimization, 2nd ed. Springer (2006). · Zbl 1108.65060
[11] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics (1991). · Zbl 0788.73002
[12] C. Carstensen, Convergence of adaptive finite element methods in computational mechanics. Appl. Numer. Math. 59 (2009) 2119-2130. · Zbl 1419.74232
[13] X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38 (2001) 1200-1216. · Zbl 0979.65046
[14] G. Dal Maso An Introduction to Γ-convergence. Birkhäuser, Boston (1993).
[15] G. Dal Maso, A. DeSimone and M.G. Mora, Quasistatic Evolution Problems for Linearly Elastic-perfectly Plastic Materials. Arch. Rational Mech. Anal. 180 (2006) 237-291. · Zbl 1093.74007
[16] G. Dal Maso, A. Demyanov and A. DeSimone, Quasistatic evolution problems for pressure-sensitive plastic materials. Milan J. Math. 75 (2007) 117-134. · Zbl 1225.74016
[17] A. Demyanov, Regularity of stresses in Prandtl-Reuss perfect plasticity. Calc. Variat. Part. Differ. Eq. 34 (2009) 23-72. · Zbl 1149.74014
[18] P. Doktor and A. Ženišek, The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions. Appl. Math., Praha 51 (2006) 517-547. · Zbl 1164.46322
[19] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en phyisque. Dunod, Paris (1972). · Zbl 0298.73001
[20] F. Ebobisse and B.D. Reddy, Some mathematical problems in perfect plasticity. Comput. Methods Appl. Mech. Eng. 193 (2004) 5071-5094. · Zbl 1112.74324
[21] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (1987). · Zbl 0939.49002
[22] G.A. Francfort and A. Giacomini, Small-strain heterogeneous elastoplasticity revisited. Commun. Pure Appl. Math. 65 (2012) 1185-1241. · Zbl 1396.74036
[23] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer (1998). · Zbl 1042.35002
[24] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations. Springer-Verlag (1986). · Zbl 0585.65077
[25] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer (1984). · Zbl 0536.65054
[26] W. Han and B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, 2nd ed. Springer, New York (2013). · Zbl 1258.74002
[27] M. Hintermüller, Mesh independence and fast local convergence of a primal-dual active-set method for mixed control-state constrained elliptic control problems. ANZIAM J. 49 (2007) 1-38. · Zbl 1154.65057
[28] M. Hintermüller and K. Kunisch, Total bounded variation regularization as bilaterally constrained optimization problem. SIAM J. Appl. Math. 64 (2004) 1311-1333. · Zbl 1055.94504
[29] M. Hintermüller and K. Kunisch, Feasible and non-interior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45 (2006) 1198-1221. · Zbl 1121.49030
[30] M. Hintermüller and C.N. Rautenberg, A sequential minimization technique for elliptic quasi-variational inequalities with gradient constraints. SIAM J. Optim. 22 (2012) 1224-1257. · Zbl 1268.47076
[31] M. Hintermüller and S. Rösel, A duality-based path-following semismooth Newton method for elasto-plastic contact problems. J. Comput. Appl. Math. 292 (2016) 150-173. · Zbl 1322.49051
[32] M. Hintermüller and M. Ulbrich, A mesh-independence result for semismooth Newton methods. Math. Program., Ser. B 171 (2004) 151-184. · Zbl 1079.65065
[33] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (2003) 865-888. · Zbl 1080.90074
[34] M. Hintermüller, C.N. Rautenberg and S. Rösel, Density of convex intersections and applications. Proc. R. Soc. A 473 (2017) 20160919. · Zbl 1402.49012
[35] K. Ito and K. Kunisch, Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces. Nonlinear Anal. Theory Methods Appl. Ser. A, Theory Methods 41 (2000) 591-616. · Zbl 0971.49014
[36] C. Johnson, Existence theorems for plasticity problems. J. Math. Pure Appl. 55 (1976) 431-444. · Zbl 0351.73049
[37] R. Kohn and R. Temam, Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim. 10 (1983) 1-35. · Zbl 0532.73039
[38] S. Li and W.K. Liu, Numerical simulations of strain localization in inelastic solids using mesh-free methods. Int. J. Numer. Methods Eng. 48 (2000) 1285-1309. · Zbl 1052.74618
[39] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Variat. Part. Differ. Eq. 22 (2005) 73-99. · Zbl 1161.74387
[40] H. Matthies, Finite element approximations in thermo-plasticity. Numer. Funct. Anal. Optim. 1 (1979) 145-160. · Zbl 0439.73071
[41] A. Mielke and T. Roubiček, Rate-independent Systems. Springer (2015). · Zbl 1339.35006
[42] U. Mosco. Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3 (1969) 510-585. · Zbl 0192.49101
[43] A. Needleman and V. Tvergaard, Analyses of plastic flow localization in metals. Appl. Mech. Rev. 45 (1992) S3-S18.
[44] J. T. Oden and N. Kikuchi, Contact Problems in Elasticity. Society for Industrial and Applied Mathematics (1988).
[45] R. Rannacher and F.-T. Suttmeier, A posteriori error control in finite element methods via duality techniques: application to perfect plasticity. Comput. Mech. 21 (1998) 123-133. · Zbl 0910.73064
[46] S. Repin, Errors of finite element method for perfectly elasto-plastic problems. Math. Models Methods Appl. Sci. 06 (1996) 587-604. · Zbl 0856.73071
[47] T. Roubiček and J. Valdman, Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computerimplementation. SIAM J. Appl. Math. 76 (2016) 314-340. · Zbl 1383.74016
[48] M. Sauter. Numerical Analysis of Algorithms for Infinitesimal Associated and Non-Associated Elasto-Plasticity. Ph.D. thesis, Karlsruher Institut für Technologie (2010).
[49] M. Sauter and C. Wieners, On the superlinear convergence in computational elasto-plasticity. Comput. Methods Appl. Mech. Eng. 200 (2011) 3646-3658. · Zbl 1239.74014
[50] A. Schwarz, J. Schröder and G. Starke, Least-squares mixed finite elements for small strain elasto-viscoplasticity. Int. J. Numer. Methods Eng. 77 (2009) 1351-1370. · Zbl 1156.74386
[51] J.C. Simo and T.J.R. Hughes, Computational Inelasticity. Springer-Verlag, Berlin (1998). · Zbl 0934.74003
[52] F. Solombrino, Quasistatic evolution in perfect plasticity for general heterogeneous materials. Arch. Ration. Mech. Anal. 212 (2014) 283-330. · Zbl 1293.35327
[53] G. Strang and R. Temam, Functions of bounded deformation. Arch. Ration. Mech. Anal. 75 (1980) 7-21. · Zbl 0472.73031
[54] P.-M. Suquet, Sur les équations de la plasticité: existence et régularité des solutions. J. Mec., Paris 20 (1981) 3-39. · Zbl 0474.73030
[55] R. Temam, Mathematical Problems in Plasticity. Gauthier-Villars (1985). · Zbl 0457.73017
[56] C. Wieners, Multigrid methods for Prandtl-Reuss plasticity. Numer. Linear Algebra Appl. 6 (1999) 457-478. · Zbl 1010.74072
[57] C. Wieners. Nonlinear solution methods for infinitesimal perfect plasticity. Zeitsch. Angew. Math. Mech. 87 (2007) 643-660. · Zbl 1128.74008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.