×

Discrete-to-continuum limits of planar disclinations. (English) Zbl 1468.74004

Summary: In materials science, wedge disclinations are defects caused by angular mismatches in the crystallographic lattice. To describe such disclinations, we introduce an atomistic model in planar domains. This model is given by a nearest-neighbor-type energy for the atomic bonds with an additional term to penalize change in volume. We enforce the appearance of disclinations by means of a special boundary condition. Our main result is the discrete-to-continuum limit of this energy as the lattice size tends to zero. Our proof relies on energy relaxation methods. The main mathematical novelty of our proof is a density theorem for the special boundary condition. In addition to our limit theorem, we construct examples of planar disclinations as solutions to numerical minimization of the model and show that classical results for wedge disclinations are recovered by our analysis.

MSC:

74A25 Molecular, statistical, and kinetic theories in solid mechanics
74E15 Crystalline structure
74G65 Energy minimization in equilibrium problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] K. Anthony, U. Essmann, A. Seeger and H. Trauble, Disclinations and the Cosserat-Continuum with Incompatible Rotations, volume Mechanics of Generalized Continua, Proceedings of the IUTAM-Symposium on The Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany), 1967. Springer-Verlag Berlin Heidelberg (1968) 355-358. · Zbl 0198.58601
[2] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ratl. Mech. Anal. 86 (1984) 125-145. · Zbl 0565.49010
[3] M.P. Ariza and M. Ortiz, Discrete crystal elasticity and discrete dislocations in crystals. Arch. Ratl. Mech. Anal. 178 (2005) 149-226. · Zbl 1115.74012
[4] J. Braun, M. Buze and C. Ortner, The effect of crystal symmetries on the locality of screw dislocation cores. SIAM J. Math. Anal. 51 (2019) 1108-1136. · Zbl 1428.35572
[5] J. Ball, P. Cesana and P. Hambly, A probabilistic model for martensitic avalanches. MATEC Web Conf . 33 (2015) 1-6.
[6] K. Bhattacharya, Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press (2003). · Zbl 1109.74002
[7] M. Buze, T. Hudson and C. Ortner, Analysis of an atomistic model for anti-plane fracture. Math. Models Methods Appl. Sci. 29 (2019) 2469-2521. · Zbl 1425.82026
[8] J. Ball and R. James, Fine phase mixtures as minimizers of eenergies. Arch. Ration. Mech. Anal. 100 (1987) 13-52. · Zbl 0629.49020
[9] P. Cesana, F. Della Porta, A. Rueland, C. Zillinger and B. Zwicknagl, Exact constructions in the (non-linear) planar theory of elasticity: from elastic crystals to nematic elastomers. Arch. Ratl. Mech. Anal. 237 (2020) 383-445. · Zbl 1434.74059
[10] P. Cesana and P. Hambly, A probabilistic model for interfaces in a martensitic phase transition. Preprint https://arxiv.org/abs/1810.04380 (2018).
[11] P. Cesana, M. Porta and T. Lookman, Asymptotic analysis of hierarchical martensitic microstructure. J. Mech. Phys. Solids 72 (2014) 174-192. · Zbl 1328.74070
[12] S. Conti and B. Schweizer, Rigidity and gamma convergence for solid-solid phase transitions with SO(2) invariance. Commun. Pure Appl. Math. 59 (2006) 830-868. · Zbl 1146.74018
[13] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, Heidelberg, 2nd edition (2008). · Zbl 1140.49001
[14] G. Dal Maso An Introduction to Γ-Convergence. Birkhäuser Verlag, Boston (1993). · doi:10.1007/978-1-4612-0327-8
[15] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521-573. · Zbl 1252.46023
[16] R. de Wit Linear theory of static disclinations. Vol. 317 of Fundamental Aspects of Dislocation Theory, edited by J.A. Simmons, R. de Wit, and R. Bullough. Nat. Bur. Stand. (US), Spec. Publ. (1970) 651-673.
[17] R. de Wit Theory of disclinations: II. continuous and discrete disclinations in anisotropic elasticity. J. Res. Natl. Bureau Stand. A 77A (1973).
[18] R. de Wit Theory of disclinations: III. continuous and discrete disclinations in isotropic elasticity. J. Res. Natl. Bureau Stand. A 73A (1973).
[19] R. de Wit Theory of disclinations: IV. straight disclinations. J. Res. Natl. Bureau Stand. A 77A (1973).
[20] V. Ehrlacher, C. Ortner and A.V. Shapeev, Analysis of boundary conditions for crystal defect atomistic simulations. Arch. Ratl. Mech. Anal. 222 (2016) 1217-1268. · Zbl 1358.35187
[21] I. Ekeland and R. Temam, Vol. 28 of Convex Analysis and Variational Problems. SIAM (1999). · Zbl 0939.49002 · doi:10.1137/1.9781611971088
[22] D. Essmann and H. Träuble, The direct observation of individual flux lines in type ii superconductors. Phys. Lett. 24A (1967).
[23] G. Friesecke, R. James and S. Müller, A theorem on geometric rigidity and the derivation of non linear plate theory from three dimensional elasticity. Commun. Pure Appl. Math. 55 (2002) 1461—1506. · Zbl 1021.74024
[24] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova 27 (1957) 284-305. · Zbl 0087.10902
[25] K. Hagihara, T. Mayama, M. Honnami, M. Yamasaki, H. Izuno, T. Okamoto, T. Ohashi, T. Nakano and Y. Kawamura, Orientation dependence of the deformation kink band formation behavior in Zn single crystal. Int. J. Plasticity 77 (2016) 174-191.
[26] K. Hagihara, T. Okamoto, H. Izuno, M. Yamasaki, M. Matsushita, T. Nakano and Y. Kawamura, Plastic deformation behavior of 10H-type synchronized LPSO phase in a Mg-Zn-Y system. Acta Mater. 109 (2016) 90-102.
[27] T. Hudson and C. Ortner, Existence and stability of a screw dislocation under anti-plane deformation. Arch. Ratl. Mech. Anal. 213 (2014) 887-929. · Zbl 1342.82146
[28] T. Hudson and C. Ortner, Analysis of stable screw dislocation configurations in an antiplane lattice model. SIAM J. Math. Anal. 47 (2015) 291-320. · Zbl 1317.74035
[29] T. Inamura, H. Hosoda and S. Miyazaki, Incompatibility and preferred morphology in the self-accommodation microstructure of β-titanium shape memory alloy. Philos. Mag. 93 (2013) 618-634.
[30] T. Inamura, M. Li, M. Tahara and H. Hosoda, Formation process of the incompatible martensite microstructure in a beta-titanium shape memory alloy. Acta Mater. 124 (2017) 351-359.
[31] T. Inamura, Geometry of kink microstructure analysed by rank-1 connection. Acta Mater. 173 (2019) 270-280.
[32] Y. Kitano and K. Kifune, HREM study of disclinations in MgCd ordered alloy. Ultramicroscopy 39 (1991) 279-286.
[33] R. Kupferman and C. Maor, Variational convergence of discrete geometrically-incompatible elastic models. Calc. Var. Partial Differ. Equ. 57 (2018). · Zbl 1394.53094
[34] M. Lazar, Wedge disclination in the field theory of elastoplasticity. Phys. Lett. A 311 (2003) 416-425.
[35] G. Lazzaroni, M. Palombaro and A. Schlömerkemper, A discrete to continuum analysis of dislocations in nanowire heterostructures. Commun. Math. Sci. 13 (2015) 1105-1133. · Zbl 1327.74034
[36] X.W. Lei and A. Nakatani, A deformation mechanism for ridge-shaped kink structure in layered solids. J. Appl. Mech. 82 (2015) 071016.
[37] C. Manolikas and S. Amelinckx, Phase transitions in ferroelastic lead orthovanadate as observed by means of electron microscopy and electron diffraction. Phys. Stat. Sol. 60 (1980) 607-617.
[38] F.R.N. Nabarro, Theory of crystal dislocations. International Series of Monographs on Physics. Oxford: Clarendon Press (1967).
[39] M. Porta and T. Lookman, Heterogeneity and phase transformation in materials: energy minimization, iterative methods and geometric nonlinearity. Acta Mater. 61 (2013) 5311-5340.
[40] M. Ponsiglione, Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39 (2007) 449-469. · Zbl 1135.74037
[41] A.E. Romanov and V.I. Vladimirov, in Vol. 9 of Dislocations in solids, edited by F.R.N. Nabarro. North-Holland, Amsterdam (1992) 191.
[42] S. Seung, and R. Nelson, Defects in flexible membranes with crystalline order. Phys. Rev. A 38 (1988) 1005.
[43] H. Träuble and D. Essmann, Fehler im flussliniengitter von supraleitern zweiter art. Phys. Stat. Sol. 25 (1968).
[44] V. Volterra, Sur l’équilibre des corps élastiques multiplement connexes. Ann. scientifiques de l’École Normale Supérieure 24 (1907) 401-517. · JFM 38.0814.01
[45] C. Zhang and A. Acharya, On the relevance of generalized disclinations in defect mechanics. J. Mech. Phys. Solids 119 (2018) 188-223. · Zbl 1445.74008
[46] L.M. Zubov, Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Lecture Notes in Physics Monographs. Springer (1997). · Zbl 0899.73001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.