×

Independent decompositions of chemical reaction networks. (English) Zbl 1467.92256

Summary: A chemical reaction network (CRN) is composed of reactions that can be seen as interactions among entities called species, which exist within the system. Endowed with kinetics, CRN has a corresponding set of ordinary differential equations (ODEs). In chemical reaction network theory, we are interested with connections between the structure of the CRN and qualitative properties of the corresponding ODEs. One of the results in decomposition theory of CRNs is that the intersection of the sets of positive steady states of the subsystems is equal to the set of positive steady states of the whole system, if the decomposition is independent. Hence, computational approach using independent decompositions can be used as an efficient tool in studying large systems. In this work, we provide a necessary and sufficient condition for the existence of a nontrivial independent decomposition of a CRN, which leads to a novel step-by-step method to obtain such decomposition, if it exists. We also illustrate these results using real-life examples. In particular, we show that a CRN of a popular model of anaerobic yeast fermentation pathway has a nontrivial independent decomposition, while a particular biological system, which is a metabolic network with one positive feedforward and a negative feedback has none. Finally, we analyze properties of positive steady states of reaction networks of specific influenza virus models.

MSC:

92E20 Classical flows, reactions, etc. in chemistry
92C40 Biochemistry, molecular biology
92C42 Systems biology, networks
92D30 Epidemiology

Software:

DEDiscover
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arceo, CP; Jose, E.; Lao, A.; Mendoza, E., Reaction networks and kinetics of biochemical systems, Math Biosci, 283, 13-29 (2017) · Zbl 1366.92054 · doi:10.1016/j.mbs.2016.10.004
[2] Arceo, CP; Jose, E.; Marin-Sanguino, A.; Mendoza, E., Chemical reaction network approaches to biochemical systems theory, Math Biosci, 269, 135-152 (2015) · Zbl 1351.92016 · doi:10.1016/j.mbs.2015.08.022
[3] Baccam, P.; Beauchemin, C.; Macken, CA; Hayden, FG; Perelson, AS, Kinetics of influenza A virus infection in humans, J Virol, 80, 7590-7599 (2006) · doi:10.1128/JVI.01623-05
[4] Curto, R.; Sorribas, A.; Cascante, M., Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature, Math Biosci, 130, 1, 25-50 (1995) · Zbl 0835.92015 · doi:10.1016/0025-5564(94)00092-E
[5] Feinberg, M., Chemical reaction network structure and the stability of complex isothermal reactors I: the deficiency zero and deficiency one theorems, Chem Eng Sci, 42, 2229-2268 (1987) · doi:10.1016/0009-2509(87)80099-4
[6] Feinberg, M., Foundations of chemical reaction network theory, 84-88 (2019), NewYork: Springer, NewYork · Zbl 1420.92001 · doi:10.1007/978-3-030-03858-8
[7] Feinberg M, Lectures on chemical reaction networks, University of Wisconsin, Available at https://crnt.osu.edu/LecturesOnReactionNetworks (1979)
[8] Feinberg, M.; Aris, R.; Aronson, DG; Swinney, HL, Some recent results in chemical reaction network theory, Patterns and dynamics in reactive media The IMA Volumes in Mathematics and its Applications (1991), New York: Springer, New York
[9] Feinberg, M., The existence and uniqueness of steady states for a class of chemical reaction networks, Arch Ration Mech Anal, 132, 311-370 (1995) · Zbl 0853.92024 · doi:10.1007/BF00375614
[10] Fortun, N.; Lao, A.; Razon, L.; Mendoza, E., A deficiency zero theorem for a class of power-law kinetic systems with non-reactant-determined interactions, MATCH Commun Math Comput Chem, 81, 3, 621-638 (2019) · Zbl 1471.92478
[11] Fortun, N.; Mendoza, E.; Razon, L.; Lao, A., A deficiency-one algorithm for power-law kinetic systems with reactant-determined interactions, J Math Chem, 56, 2929-2962 (2018) · Zbl 1406.92800 · doi:10.1007/s10910-018-0925-2
[12] Gross, E.; Harrington, H.; Meshkat, N.; Shiu, A., Joining and decomposing reaction networks, J Math Biol, 80, 1683-1731 (2020) · Zbl 1439.13080 · doi:10.1007/s00285-020-01477-y
[13] Handel, A.; Longini, IM Jr; Antia, R., Towards a quantitative understanding of the within-host dynamics of influenza A infections, J R Soc Interface, 7, 35-47 (2009) · doi:10.1098/rsif.2009.0067
[14] Hernandez, BS; Mendoza, ER; de los Reyes, AAV, A computational approach to multistationarity of power-law kinetic systems, J Math Chem, 58, 56-87 (2020) · Zbl 1432.92044 · doi:10.1007/s10910-019-01072-7
[15] Hernandez, BS, Analysis of equilibria properties of chemical reaction networks with independent decompositions for classes of kinetics, MATCH Commun Math Comput Chem, 85, 3, 577-604 (2021) · Zbl 1474.92184
[16] Hernandez, BS, On the independence of fundamental decompositions of power-law kinetic systems, MATCH Commun Math Comput Chem, 84, 57-84 (2020) · Zbl 1473.92115
[17] Hernandez BS, Mendoza ER (2021) Positive equilibria of Hill-type kinetic systems. J Math Chem 59:840-870 · Zbl 1466.92303
[18] Horn, F.; Jackson, R., General mass action kinetics, Arch Ration Mech Anal, 47, 187-194 (1972) · doi:10.1007/BF00251225
[19] Ji H, Uniqueness of equilibria for complex chemical reaction networks, Ph.D. Dissertation, Ohio State University (2011)
[20] Miao, H.; Hollenbaugh, JA; Zand, MS; Holden-Wiltse, J.; Mosmann, TR; Perelson, AS; Wu, H.; Topham, DJ, Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus, J Virol, 84, 6687-6698 (2010) · doi:10.1128/JVI.00266-10
[21] Otero-Muras, I.; Yordanov, P.; Stelling, J., Chemical reaction network theory elucidates sources of multistability in interferon signaling, PLoS Comput Biol, 13, 4, e1005454 (2017) · doi:10.1371/journal.pcbi.1005454
[22] Peter, S.; Olzer, MH; Lamkiewicz, K.; di Fenizio, PS; Al Hwaeer, H.; Marz, M.; Schuster, S.; Dittrich, P.; Ibrahim, B., Structure and hierarchy of influenza virus models revealed by reaction network analysis, Viruses, 11, 449 (2019) · doi:10.3390/v11050449
[23] Roman, S., Advanced linear algebra (2008), New York: Springer, New York · Zbl 1132.15002 · doi:10.1007/978-0-387-72831-5
[24] Sorribas, A.; Hernández-Bermejo, B.; Vilaprinyo, E.; Alves, R., Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations, Biotechnol Bioeng, 97, 5, 1259-1277 (2020) · doi:10.1002/bit.21316
[25] Voit, E., Computational analysis of biochemical systems (2000), Cambridge: Cambridge University Press, Cambridge
[26] Wiuf, C.; Feliu, E., Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of Interacting species, SIAM J Appl Dyn, 12, 1685-1721 (2013) · Zbl 1278.92012 · doi:10.1137/120873388
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.