×

Modeling continuous glucose monitoring with fractional differential equations subject to shocks. (English) Zbl 1467.92054

Summary: Continuous glucose monitoring (CGM) produces long time-series of noisy observations of a single variable (tissue glucose concentration), whose evolution may be explained by a dynamical model. In order to represent the unknown mixture of possible control mechanisms of different orders affecting the measured variable, a fractional differential approach seems justified. In any case, variations in food intake and/or physical activity ought to be taken into account if a plausible interpretation of the dynamics is to be obtained. In the present work, the mathematical construction and the numerical implementation of a fractional differential equations (FDE) initial value problem are systematically reviewed, with the intent of offering the reader a concise and mathematically rigorous description of this approach. An FDE model for CGM is formulated: the model includes compartments for stomach and intestinal glucose contents and for blood and tissue (subcutaneous) glucose concentrations, as well as the shock effects of food ingestion and of increased glucose consumption due to physical activity. The model parameters, including the (non-integer) order of differentiation, are estimated from CGM observations on six Type 1 diabetic patients. The best-fit fractional orders for the six subjects range from 1.59 to 2.13. For comparison, best fits have also been computed for all subjects using an average fractional order of 1.9 and integer orders of 1 and 2. The results indicate that in the case of CGM the fractional differential model, which should be physiologically more appropriate, in fact fits the data much better than the first-order model and also better than the 2nd-order model.

MSC:

92C32 Pathology, pathophysiology
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andelin, M.; Kropff, J.; Matuleviciene, V.; Joseph, J.; Attvall, S.; Theodorsson, E.; Hirsch, I.; Imberg, H.; Dahlqvist, S.; Klonoff, D.; Haraldsson, B.; DeVries, J.; Lind, M., Assessing the accuracy of continuous glucose monitoring (cgm) calibrated with capillary values using capillary or venous glucose levels as a reference, J. Diabetes Sci. Technol., 10, 4, 876-884 (2016)
[2] Aronson, R.; Abitbol, A.; Tweden, K., First assessment of the performance of an implantable continuous glucose monitoring system through 180 days in a primarily adolescent population with type 1 diabetes, Diabetes Obes. Metab., 21, 7, 1689-1694 (2019)
[3] Aussedat, B.; Dupire-Angel, M.; Gifford, R.; Klein, J. C.; Wilson, G. S.; Reach, G., Interstitial glucose concentration and glycemia: implications for continuous subcutaneous glucose monitoring, Am. J. Physiol. Endocrinol. Metabol., 278, 4, E716-728 (2000)
[4] Basu, A.; Dube, S.; Veettil, S.; Slama, M.; Kudva, Y. C.; Peyser, T.; Carter, R. E.; Cobelli, C.; Basu, R., Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes, J. Diabetes Sci. Technol., 9, 1, 63-68 (2015)
[5] Battelino, T.; Phillip, M., Real-time continuous glucose monitoring in randomized control trials, Pediatr. Endocrinol. Rev.: PER, 401-404 (2010)
[6] Battelino, T.; Conget, I.; Olsen, B.; Schütz-Fuhrmann, I.; Hommel, E.; Hoogma, R.; Schierloh, U.; Sulli, N.; Bolinder, J., The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial, Diabetologia, 55, 3155-3162 (2012)
[7] Beck, R. W., Effectiveness of continuous glucose monitoring in a clinical care environment: evidence from the juvenile diabetes research foundation continuous glucose monitoring (jdrf-cgm) trial, Diabetes Care, 33, 1, 17-22 (2010)
[8] Beck, R. W.; Hirsch, I. B.; Laffel, L.; Tamborlane, W. V.; Bode, B. W.; Hirsch, I. B.; Laffel, L.; Tamborlane, W. V.; Bode, B. W.; Buckingham, B.; Chase, P.; Clemons, R.; Fiallo-Scharer, R.; Fox, L. A.; Gilliam, L. K.; Huang, E. S.; Kollman, C.; Kowalski, A. J.; Lawrence, J. M.; Lee, J.; Mauras, N.; O’Grady, M.; Ruedy, K. J.; Tansey, M.; Tsalikian, E.; Weinzimer, S. A.; Wilson, D. M.; Wolpert, H.; Wysocki, T.; Xing, D., The effect of continuous glucose monitoring in well-controlled type 1 diabetes, Diabetes Care, 32, 8, 1378-1383 (2009)
[9] Beck, R.W., Riddlesworth, T., Ruedy, K., Ahmann, A., Bergenstal, R., Haller, S., Kollman, C., Kruger, D., McGill, J.B., Polonsky, W., Toschi, E., Wolpert, H., Price, D., Group, D.S. 2017. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections the diamond randomized clinical trial. JAMA 317(4):371-378.
[10] Buckingham, B. A.; Kollman, C.; Beck, R.; Kalajian, A.; Fiallo-Scharer, R.; Tansey, M. J.; Fox, L. A.; Wilson, D. M.; Weinzimer, S. A.; Ruedy, K. J.; Tamborlane, W. V., Evaluation of factors affecting (cgms) calibration, Diabetes Technol. Therapeut., 8, 3, 318-325 (2006)
[11] Chee, F.; Fernando, T., Closed-loop control of blood glucose (2007), Springer-Verlag
[12] Cho, Y.; Kim, I.; Sheen, D., A fractional-order model for minmod millennium, Math. Biosci., 262, 36-45 (2015) · Zbl 1315.92044
[13] Clarke, W. L.; Anderson, S.; Farhy, L.; Breton, M.; Gonder-Frederick, L.; Cox, D.; Kovatchev, B., Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis, Diabetes Care, 28, 10, 2412-2417 (2005)
[14] Coman, S.; Boldisor, C.; Floroian, L., Fractional adaptive control for a fractional-order insulin-glucose dynamic model, Inst. Electr. Electron. Engrs., 887-892 (2017)
[15] Continuous glucose monitoring, Medtronic 2016. URL:http://www.medtronicdiabetes.com/products/continuous-glucose-monitoring
[16] Das, S., Functional fractional calculus for system identification and controls (2008), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1154.26007
[17] Deiss, D.; Bolinder, J.; Riveline, J.-P.; Battelino, T.; Bosi, E.; Tubiana-Rufi, N.; Kerr, D.; Phillip, M., Improved glycemic control in poorly controlled patients with type 1 diabetes using real-time continuous glucose monitoring, Diabetes Care, 29, 12, 2730-2732 (2006)
[18] Diabetes, world health organization 2017. URL:http://www.who.int/mediacentre/factsheets/fs312/en/.
[19] Diabetes Control and Complications Trial Research Group, Nathan, D.M., Genuth, S., Lachin, J., Cleary, P., Crofford, O., Davis, M., Rand, L., Siebert, C. 1993. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New Engl. J. Med. 329(14):977-986.
[20] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29, 1-4, 3-22 (2002) · Zbl 1009.65049
[21] Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Y. F., Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Eng., 194, 6-8, 743-773 (2005) · Zbl 1119.65352
[22] Dovč, K.; Bratina, N.; Battelino, T., A new horizon for glucose monitoring, Hormone Res. Paediat., 83, 3, 149-156 (2015)
[23] Hilfer, R., Applications of fractional calculus in physics (2000), World Scientific: World Scientific Singapore · Zbl 0998.26002
[24] Hoss, U.; Budiman, E.; Liu, H.; Christiansen, M., Feasibility of factory calibration for subcutaneous glucose sensors in subjects with diabetes, J. Diabetes Sci. Technol., 8, 1, 89-94 (2014)
[25] Khatri, A. 2015. Automated processing of continuous glucose monitoring (cgm) data to study onset of diabetes, Master’s thesis.
[26] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier New York, NY · Zbl 1092.45003
[27] Kisela, T., 2008. Fractional differential equations and their applications, Phd thesis, Brno University of Technology,https://www.researchgate.net/publication/249993249.
[28] Kropff, J.; DeVries, H. J., Continuous glucose monitoring, future products, and update on worldwide artificial pancreas projects, Diabetes Technol. Therapeut., 18, S2, S253-S263 (2016)
[29] Lind, M.; Polonsky, W.; Hirsch, I. B.; Heise, T.; Bolinder, J.; Dahlqvist, S.; Schwarz, E.; Ólafsdóttir, A. F.; Frid, A.; Wedel, H.; Ahlén, E.; Nyström, T.; Hellman, J., Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: The gold randomized clinical trial, JAMA, 317, 4, 379-387 (2017)
[30] O’Connell, M.; Donath, S.; O’Neal, D.; Colman, P.; Ambler, G.; Jones, T.; Davis, E.; Cameron, F., Glycaemic impact of patient-led use of sensor-guided pump therapy in type 1 diabetes: a randomised controlled trial, Diabetologia, 52, 1250-1257 (2009)
[31] Olansky, L.; Kennedy, L., Finger-stick glucose monitoring, Diabetes Care, 33, 4, 948-949 (2010)
[32] Petráš, I. 2011. Fractional-order Nonlinear Systems, Beijing: Higher Education Press and Berlin: Springer-Verlag, 2011. · Zbl 1228.34002
[33] Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1998), Elsevier · Zbl 0922.45001
[34] Rodbard, D., The challenges of measuring glycemic variability, J. Diabetes Sci. Technol., 6, 3, 712-715 (2012)
[35] Rodbard, D. 2016. Continuous glucose mornitoring: A review of successes, challenges, and opportunities. Diabetes Technol. Therapeut. 18:S2-3-S2-12.
[36] Rooka, S.; Ghasemi, R., Designning fractional ts observers for a class of fractional model of the blood glucose for type i diabetes, Int. J. Adv. Sci. Eng. Technol., 3, 116-123 (2015)
[37] Sakulrang, S.; Moore, E. J.; Sungnul, S.; De Gaetano, A., A fractional differential equation model for continuous glucose monitoring data, Adv. Difference Eqs., 150, 1-11 (2017) · Zbl 1422.92085
[38] Srivastava, H. M.; Dubey, R. S.; Jain, M., A study of the fractional-order mathematical model of diabetes and its resulting complications, Math. Methods Appl. Sci., 42, 4570-4583 (2019) · Zbl 1425.92118
[39] Tamborlane, W.; Beck, R.; Bode, B.; Buckingham, B.; Chase, H.; Clemons, R.; Fiallo-Scharer, R.; Fox, L.; Gilliam, L.; Hirsch, I.; Huang, E.; Kollman, C.; Kowalski, A.; Laffel, L.; Lawrence, J.; Lee, J.; Mauras, N.; O’Grady, M.; Ruedy, K.; Tansey, M.; Tsalikian, E.; Weinzimer, S.; Wilson, D.; Wolpert, H.; Wysocki, T.; Xing, D., Continuous glucose monitoring and intensive treatment of type 1 diabetes, New Engl. J. Med., 359, 1464-1476 (2008)
[40] Zueger, T.; Diem, P.; Mougiakakou, S.; Stettler, C., Influence of time point of calibration on accuracy of continuous glucose monitoring in individuals with type 1 diabetes, Diabetes Technol. Therapeut., 14, 7, 583-588 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.