×

A mixed finite element formulation for ductile damage modeling of thermoviscoplastic metals accounting for void shearing. (English) Zbl 1467.74087

Summary: The modeling of ductile damage in engineering metallic materials is an essential step in a design process. In this paper, a mixed finite element formulation is developed to predict ductile damage in thermoviscoplastic porous metals. The novel aspect of the model is the enhancement of Gurson’s plasticity formulation with a void shearing mechanism capable describing thermoviscoplastic flow stress and thermal diffusion. Thus, the model accounts for void growth, nucleation and coalescence; strain and strain-rate hardening; thermal softening; heating by plastic work; thermal diffusion; localized shear banding; and material strength degradation. Associative plasticity and small strains are assumed. Both strong and weak forms describing the material complex behavior are presented. Time discretization by means of backward Euler and Newmark-\(\beta\) schemes is employed together with Galerkin finite element approximations, leading to a fully discrete set of nonlinear coupled algebraic equations. Two dynamic fracture problems involving ductile failure of plates under a plane strain assumption are numerically analyzed. The effects of the strain rate, thermal diffusion and void shearing mechanism are investigated in detail and shown to be significant. Results show that the present approach can reproduce plastically induced damage, localized shear banding, heating, porosity-induced stress degradation and crack-type damage evolution. The numerical performance is also reported in order to illustrate the convergence of the method.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74R20 Anelastic fracture and damage
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74F05 Thermal effects in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Software:

Gmsh; FEAP
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Van Do, VN, The behavior of ductile damage model on steel structure failure, Procedia Eng, 142, 26-33 (2016)
[2] Li, H.; Fu, M.; Lu, J.; Yang, H., Ductile fracture: experiments and computations, Int J Plast, 27, 147-180 (2011)
[3] Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part i-yield criteria and flow rules for porous ductile media
[4] Tvergaard, V., Influence of voids on shear band instabilities under plane strain conditions, Int J Fract, 17, 389-407 (1981)
[5] Tvergaard, V., On localization in ductile materials containing spherical voids, Int J Fract, 18, 237-252 (1982)
[6] Tvergaard, V.; Needleman, A., Analysis of the cup-cone fracture in a round tensile bar, Acta Metall, 32, 157-169 (1984)
[7] Thomson, RD; Hancock, J., Ductile failure by void nucleation, growth and coalescence, Int J Fract, 26, 99-112 (1984)
[8] Needleman, A.; Tvergaard, V., An analysis of ductile rupture in notched bars, J Mech Phys Solids, 32, 461-490 (1984)
[9] Needleman, A.; Tvergaard, V., Analysis of a brittle-ductile transition under dynamic shear loading, Int J Solids Struct, 32, 2571-2590 (1995) · Zbl 0919.73222
[10] Batra, R.; Lear, MH, Simulation of brittle and ductile fracture in an impact loaded prenotched plate, Int J Fract, 126, 179-203 (2004) · Zbl 1187.74214
[11] Besson, J.; Steglich, D.; Brocks, W., Modeling of plane strain ductile rupture, Int J Plast, 19, 1517-1541 (2003) · Zbl 1098.74668
[12] Huespe, AE; Needleman, A.; Oliver, J.; Sánchez, PJ, A finite strain, finite band method for modeling ductile fracture, Int J Plast, 28, 53-69 (2012)
[13] Nielsen, KL; Tvergaard, V., Ductile shear failure or plug failure of spot welds modelled by modified gurson model, Eng Fract Mech, 77, 1031-1047 (2010)
[14] Miehe, C.; Kienle, D.; Aldakheel, F.; Teichtmeister, S., Phase field modeling of fracture in porous plasticity: a variational gradient-extended eulerian framework for the macroscopic analysis of ductile failure, Comput Methods Appl Mech Eng, 312, 3-50 (2016) · Zbl 1439.74112
[15] Dittmann, M.; Aldakheel, F.; Schulte, J.; Schmidt, F.; Krüger, M.; Wriggers, P.; Hesch, C., Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids, Comput Methods Appl Mech Eng, 361, 112730 (2020) · Zbl 1442.74040
[16] Alves, M.; Jones, N., Influence of hydrostatic stress on failure of axisymmetric notched specimens, J Mech Phys Solids, 47, 643-667 (1999) · Zbl 0954.74543
[17] Shimamura, J.; Ota, S.; Yasuda, K.; Ishikawa, N., Ductile fracture behavior of bainite-ma dual phase steels, ISIJ Int, 56, 2304-2312 (2016)
[18] Nahshon, K.; Hutchinson, J., Modification of the gurson model for shear failure, Eur J Mech A Solids, 27, 1 (2008) · Zbl 1129.74041
[19] Xue, L.; Wierzbicki, T., Ductile fracture initiation and propagation modeling using damage plasticity theory, Eng Fract Mech, 75, 3276-3293 (2008)
[20] Bai, Y.; Wierzbicki, T., A new model of metal plasticity and fracture with pressure and lode dependence, Int J Plast, 24, 1071-1096 (2008) · Zbl 1421.74016
[21] Dunand, M.; Mohr, D., On the predictive capabilities of the shear modified gurson and the modified mohr-coulomb fracture models over a wide range of stress triaxialities and lode angles, J Mech Phys Solids, 59, 1374-1394 (2011) · Zbl 1270.74187
[22] Malcher, L.; Pires, FA; De Sá, JC, An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality, Int J Plast, 30, 81-115 (2012)
[23] Dæhli, LE; Morin, D.; Børvik, T.; Hopperstad, OS, A lode-dependent gurson model motivated by unit cell analyses, Eng Fract Mech, 190, 299-318 (2018)
[24] Wright TW, Batra RC (1985) The initiation and growth of adiabatic shear bands. Technical Report, ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD
[25] Batra, R.; Kim, C., Effect of thermal conductivity on the initiation, growth and bandwidth of adiabatic shear bands, Int J Eng Sci, 29, 949-960 (1991)
[26] Wright, TW; Wright, TW, The physics and mathematics of adiabatic shear bands (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1006.74002
[27] McAuliffe, C.; Waisman, H., Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements, Comput Mech, 51, 807-823 (2013) · Zbl 1308.74039
[28] Kubík, P.; Šebek, F.; Petruška, J., Notched specimen under compression for ductile failure criteria, Mech Mater, 125, 94-109 (2018)
[29] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int J Numer Meth Eng, 46, 131-150 (1999) · Zbl 0955.74066
[30] Xu, X-P; Needleman, A., Numerical simulations of fast crack growth in brittle solids, J Mech Phys Solids, 42, 1397-1434 (1994) · Zbl 0825.73579
[31] Camacho, GT; Ortiz, M., Computational modelling of impact damage in brittle materials, Int J Solids Struct, 33, 2899-2938 (1996) · Zbl 0929.74101
[32] Remmers, JJ; de Borst, R.; Needleman, A., A cohesive segments method for the simulation of crack growth, Comput Mech, 31, 69-77 (2003) · Zbl 1038.74679
[33] Parvizian, J.; Düster, A.; Rank, E., Finite cell method, Comput Mech, 41, 121-133 (2007) · Zbl 1162.74506
[34] Huespe, AE; Needleman, A.; Oliver, J.; Sánchez, PJ, A finite thickness band method for ductile fracture analysis, Int J Plast, 25, 2349-2365 (2009)
[35] Crété, J-P; Longère, P.; Cadou, J-M, Numerical modelling of crack propagation in ductile materials combining the gtn model and x-fem, Comput Methods Appl Mech Eng, 275, 204-233 (2014) · Zbl 1296.74108
[36] Aldakheel, F.; Wriggers, P.; Miehe, C., A modified gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling, Comput Mech, 62, 815-833 (2018) · Zbl 1459.74024
[37] Cao, T-S; Montmitonnet, P.; Bouchard, P-O, A detailed description of the gurson-tvergaard-needleman model within a mixed velocity-pressure finite element formulation, Int J Numer Meth Eng, 96, 561-583 (2013) · Zbl 1352.74051
[38] Simonsen, BC; Li, S., Mesh-free simulation of ductile fracture, Int J Numer Meth Eng, 60, 1425-1450 (2004) · Zbl 1060.74673
[39] Ren, B.; Li, S.; Qian, J.; Zeng, X., Meshfree simulations of spall fracture, Comput Methods Appl Mech Eng, 200, 797-811 (2011) · Zbl 1225.74125
[40] Yoon, Y-C; Song, J-H, Extended particle difference method for weak and strong discontinuity problems: part i. Derivation of the extended particle derivative approximation for the representation of weak and strong discontinuities, Comput Mech, 53, 1087-1103 (2014) · Zbl 1398.74482
[41] Yoon, Y-C; Song, J-H, Extended particle difference method for weak and strong discontinuity problems: part ii. Formulations and applications for various interfacial singularity problems, Comput Mech, 53, 1105-1128 (2014)
[42] Hu Y, Ren B, Ni K, Li S (2020) Meshfree simulations of large scale ductile fracture of stiffened ship hull plates during ship stranding. Meccanica 55:833-860
[43] Ren, B.; Wu, C.; Lyu, D., An h-adaptive meshfree-enriched finite element method based on convex approximations for the three-dimensional ductile crack propagation simulation, Comput Aid Geom Des, 76, 101795 (2020) · Zbl 1440.65153
[44] Silling, SA; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput Struct, 83, 1526-1535 (2005)
[45] Hansbo, A.; Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput Methods Appl Mech Eng, 193, 3523-3540 (2004) · Zbl 1068.74076
[46] Areias, PM; Belytschko, T., Letter to the editor, Comput Methods Appl Mech Eng, 195, 1275-1276 (2006) · Zbl 1378.74062
[47] Song, J-H; Areias, PM; Belytschko, T., A method for dynamic crack and shear band propagation with phantom nodes, Int J Numer Meth Eng, 67, 868-893 (2006) · Zbl 1113.74078
[48] Rabczuk, T.; Zi, G.; Gerstenberger, A.; Wall, WA, A new crack tip element for the phantom-node method with arbitrary cohesive cracks, Int J Numer Meth Eng, 75, 577-599 (2008) · Zbl 1195.74193
[49] Mostofizadeh, S.; Van der Meer, F.; Fagerström, M.; Sluys, L.; Larsson, R., An element subscale refinement for representation of the progressive fracture based on the phantom node approach, Comput Struct, 196, 134-145 (2018)
[50] Bourdin, B.; Francfort, GA; Marigo, J-J, The variational approach to fracture, J Elast, 91, 5-148 (2008) · Zbl 1176.74018
[51] McAuliffe, C.; Waisman, H., A unified model for metal failure capturing shear banding and fracture, Int J Plast, 65, 131-151 (2015)
[52] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput Mech, 55, 1017-1040 (2015) · Zbl 1329.74018
[53] Miehe, C.; Aldakheel, F.; Raina, A., Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory, Int J Plast, 84, 1-32 (2016)
[54] Svolos, L.; Bronkhorst, CA; Waisman, H., Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase-field fracture method, J Mech Phys Solids, 137, 103861 (2020)
[55] Becker R, Needleman A (1986) Effect of yield surface curvature on necking and failure in porous plastic solids. J Appl Mech 53:491-499
[56] Besson, J.; Steglich, D.; Brocks, W., Modeling of crack growth in round bars and plane strain specimens, Int J Solids Struct, 38, 8259-8284 (2001) · Zbl 1016.74060
[57] Prior, A., Applications of implicit and explicit finite element techniques to metal forming, J Mater Process Technol, 45, 649-656 (1994)
[58] Sun, J.; Lee, K.; Lee, H., Comparison of implicit and explicit finite element methods for dynamic problems, J Mater Process Technol, 105, 110-118 (2000)
[59] Harewood, F.; McHugh, P., Comparison of the implicit and explicit finite element methods using crystal plasticity, Comput Mater Sci, 39, 481-494 (2007)
[60] Siad, L.; Ouali, MO; Benabbes, A., Comparison of explicit and implicit finite element simulations of void growth and coalescence in porous ductile materials, Mater Des, 29, 319-329 (2008)
[61] Rebelo N, Nagtegaal J, Taylor L (1992) Comparison of implicit and explicit finite element methods in the simulation of metal forming processes. ABAQUS USERS CONFERENCE
[62] Kojić, M.; Vlastelica, I.; Živković, M., Implicit stress integration algorithm for gurson model in case of large strain shell deformation, facta universitatis-series: mechanics, Autom Control Robot, 4, 85-99 (2004) · Zbl 1053.74047
[63] Longère, P.; Geffroy, A-G; Leblé, B.; Dragon, A., Modeling the transition between dense metal and damaged (microporous) metal viscoplasticity, Int J Damage Mech, 21, 1020-1063 (2012)
[64] Kiran, R.; Khandelwal, K., Gurson model parameters for ductile fracture simulation in astm a992 steels, Fatigue Fracture Eng Mater Struct, 37, 171-183 (2014)
[65] Zhou, J.; Gao, X.; Sobotka, JC; Webler, BA; Cockeram, BV, On the extension of the gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions, Int J Solids Struct, 51, 3273-3291 (2014)
[66] Jiang, W.; Li, Y.; Su, J., Modified gtn model for a broad range of stress states and application to ductile fracture, Eur J Mech-A/Solids, 57, 132-148 (2016) · Zbl 1406.74591
[67] Holte, I.; Niordson, C.; Nielsen, K.; Tvergaard, V., Investigation of a gradient enriched gurson-tvergaard model for porous strain hardening materials, Eur J Mech-A/Solids, 75, 472-484 (2019) · Zbl 1472.74062
[68] Chen, Z.; Dong, X., The gtn damage model based on hill’48 anisotropic yield criterion and its application in sheet metal forming, Comput Mater Sci, 44, 1013-1021 (2009)
[69] Vadillo, G.; Reboul, J.; Fernández-Sáez, J., A modified gurson model to account for the influence of the lode parameter at high triaxialities, Eur J Mech-A/Solids, 56, 31-44 (2016) · Zbl 1406.74050
[70] Shahzamanian, M., Anisotropic gurson-tvergaard-needleman plasticity and damage model for finite element analysis of elastic-plastic problems, Int J Numer Meth Eng, 115, 1527-1551 (2018)
[71] Mengoni, M.; Ponthot, J-P, A generic anisotropic continuum damage model integration scheme adaptable to both ductile damage and biological damage-like situations, Int J Plast, 66, 46-70 (2015)
[72] Zavaliangos, A.; Anand, L., Thermal aspects of shear localization in microporous viscoplastic solids, Int J Numer Meth Eng, 33, 595-634 (1992) · Zbl 0759.73009
[73] Zavaliangos, A.; Anand, L., Thermo-elasto-viscoplasticity of isotropic porous metals, J Mech Phys Solids, 41, 1087-1118 (1993)
[74] Batra, R.; Jin, X., Analysis of dynamic shear bands in porous thermally softening viscoplastic materials, Arch Mech, 46, 13-36 (1994) · Zbl 0825.73191
[75] Batra, R.; Love, B., Adiabatic shear bands in functionally graded materials, J Therm Stress, 27, 1101-1123 (2004)
[76] Batra, R.; Lear, MH, Adiabatic shear banding in plane strain tensile deformations of 11 thermoelastoviscoplastic materials with finite thermal wave speed, Int J Plast, 21, 1521-1545 (2005) · Zbl 1148.74309
[77] Nguyen VD, Harik P, Hilhorst A, Jacques P, Pardoen T, Noels L (2019) A multi-mechanism non-local porosity model for highly-ductile materials; application to high entropy alloys. Asian Pacific congress on computational mechanics-APCOM 2019, computational & multiscale mechanics of materials
[78] Nielsen, KL; Tvergaard, V., Effect of a shear modified gurson model on damage development in a fsw tensile specimen, Int J Solids Struct, 46, 587-601 (2009) · Zbl 1215.74072
[79] Besson, J., Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms, Int J Plast, 25, 2204-2221 (2009)
[80] Hütter, G., A micromechanical gradient extension of gurson’s model of ductile damage within the theory of microdilatational media, Int J Solids Struct, 110, 15-23 (2017)
[81] Reboul, J.; Vadillo, G., Homogenized gurson-type behavior equations for strain rate sensitive materials, Acta Mech, 229, 3517-3536 (2018) · Zbl 1396.74050
[82] Voyiadjis, GZ; Kattan, PI, A plasticity-damage theory for large deformation of solids-i. Theoretical formulation, Int J Eng Sci, 30, 1089-1108 (1992) · Zbl 0756.73038
[83] Voyiadjis, G., Advances in damage mechanics: metals and metal matrix composites (2012), Amsterdam: Elsevier, Amsterdam · Zbl 0936.74004
[84] Tvergaard, V., Influence of void nucleation on ductile shear fracture at a free surface, J Mech Phys Solids, 30, 399-425 (1982) · Zbl 0496.73087
[85] Chu, C.; Needleman, A., Void nucleation effects in biaxially stretched sheets, J Eng Mater Technol, 102, 249-256 (1980)
[86] Needleman, A.; Tvergaard, V., An analysis of dynamic, ductile crack growth in a double edge cracked specimen, Int J Fract, 49, 41-67 (1991)
[87] Zhou, M.; Rosakis, A.; Ravichandran, G., Dynamically propagating shear bands in impact-loaded prenotched plates-i. Experimental investigations of temperature signatures and propagation speed, J Mech Phys Solids, 44, 981-1006 (1996)
[88] Li, S.; Liu, WK; Rosakis, AJ; Belytschko, T.; Hao, W., Mesh-free galerkin simulations of dynamic shear band propagation and failure mode transition, Int J Solids Struct, 39, 1213-1240 (2002) · Zbl 1090.74698
[89] Batra, R.; Love, B., Consideration of microstructural effects in the analysis of adiabatic shear bands in a tungsten heavy alloy, Int J Plast, 22, 1858-1878 (2006) · Zbl 1136.74308
[90] McAuliffe, C.; Waisman, H., A coupled phase field shear band model for ductile-brittle transition in notched plate impacts, Comput Methods Appl Mech Eng, 305, 173-195 (2016) · Zbl 1425.74352
[91] Babuška, I., Error-bounds for finite element method, Numer Math, 16, 322-333 (1971) · Zbl 0214.42001
[92] Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. Math Modell Numer Anal 8:129-151 · Zbl 0338.90047
[93] Simo, J.; Kennedy, J.; Taylor, R., Complementary mixed finite element formulations for elastoplasticity, Comput Methods Appl Mech Eng, 74, 177-206 (1989) · Zbl 0687.73064
[94] Becker, R.; Needleman, A.; Richmond, O.; Tvergaard, V., Void growth and failure in notched bars, J Mech Phys Solids, 36, 317-351 (1988)
[95] Taylor RL, Govindjee S (2014) FEAP-a finite element analysis program, user manual. University of California, Berkeley. http://projects.ce.berkeley.edu/feap
[96] Geuzaine, C.; Remacle, J-F, Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities, Int J Numer Meth Eng, 79, 1309-1331 (2009) · Zbl 1176.74181
[97] Henderson, A.; Guide, AP, A parallel visualization application (2007), New York: Kitware Inc, New York
[98] Miehe, C.; Aldakheel, F.; Teichtmeister, S., Phase-field modeling of ductile fracture at finite strains: a robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization, Int J Numer Meth Eng, 111, 816-863 (2017)
[99] Roth, CC; Mohr, D., Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: experiments and modeling, Int J Plast, 56, 19-44 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.