×

Optimal sparse eigenspace and low-rank density matrix estimation for quantum systems. (English) Zbl 1465.62182

Summary: Quantum state tomography, which aims to estimate quantum states that are described by density matrices, plays an important role in quantum science and quantum technology. This paper examines the eigenspace estimation and the reconstruction of large low-rank density matrix based on Pauli measurements. Both ordinary principal component analysis (PCA) and iterative thresholding sparse PCA (ITSPCA) estimators of the eigenspace are studied, and their respective convergence rates are established. In particular, we show that the ITSPCA estimator is rate-optimal. We present the reconstruction of the large low-rank density matrix and obtain its optimal convergence rate by using the ITSPCA estimator. A numerical study is carried out to investigate the finite sample performance of the proposed estimators.

MSC:

62P35 Applications of statistics to physics
62H12 Estimation in multivariate analysis
62H25 Factor analysis and principal components; correspondence analysis
62C20 Minimax procedures in statistical decision theory
81P50 Quantum state estimation, approximate cloning
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bickel, P. J.; Levina, E., Covariance regularization by thresholding, Ann. Statist., 36, 6, 2577-2604 (2008) · Zbl 1196.62062
[2] Birgé, L., A new look at an old result: Fano’s lemma (2001)
[3] Birnbaum, A.; Johnstone, I. M.; Nadler, B.; Paul, D., Minimax bounds for sparse PCA with noisy high-dimensional data, Ann. Statist., 41, 3, 1055 (2013) · Zbl 1292.62071
[4] Cai, T.; Kim, D.; Wang, Y.; Yuan, M.; Zhou, H. H., Optimal large-scale quantum state tomography with Pauli measurements, Ann. Statist., 44, 2, 682-712 (2016) · Zbl 1341.62116
[5] Cai, T.; Liu, W., Adaptive thresholding for sparse covariance matrix estimation, J. Amer. Statist. Assoc., 106, 494, 672-684 (2011) · Zbl 1232.62086
[6] Cai, T.; Ma, Z.; Wu, Y., Sparse PCA: Optimal rates and adaptive estimation, Ann. Statist., 41, 6, 3074-3110 (2013) · Zbl 1288.62099
[7] Cai, T.; Ma, Z.; Wu, Y., Optimal estimation and rank detection for sparse spiked covariance matrices, Probab. Theory Related Fields, 161, 3-4, 781-815 (2015) · Zbl 1314.62130
[8] Cai, T. T.; Zhou, H. H., Minimax estimation of large covariance matrices under l1-norm, Statist. Sinica, 22, 4, 1319-1349 (2012) · Zbl 1266.62036
[9] Golub, G.; Van Loan, C., Matrix Computations (1996), The John-Hopkins University Press · Zbl 0865.65009
[10] Häffner, H.; Hänsel, W.; Roos, C.; Benhelm, J.; Chwalla, M.; Körber, T.; Rapol, U.; Riebe, M.; Schmidt, P.; Becher, C., Scalable multiparticle entanglement of trapped ions, Nature, 438, 7068, 643 (2005)
[11] Johnstone, I. M.; Lu, A. Y., On consistency and sparsity for principal components analysis in high dimensions, J. Amer. Statist. Assoc., 104, 486, 682-693 (2009) · Zbl 1388.62174
[12] Kim, D.; Kong, X.-B.; Li, C.-X.; Wang, Y., Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data, J. Econometrics, 203, 1, 69-79 (2018) · Zbl 1386.62037
[13] Kim, D.; Wang, Y., Sparse PCA-based on high-dimensional Itô processes with measurement errors, J. Multivariate Anal., 152, 172-189 (2016) · Zbl 1350.60029
[14] Kim, D.; Wang, Y., Hypothesis tests for large density matrices of quantum systems based on Pauli measurements, Physica A, 469, 31-51 (2017) · Zbl 1400.81016
[15] Kim, D.; Wang, Y.; Zou, J., Asymptotic theory for large volatility matrix estimation based on high-frequency financial data, Stochastic Process. Appl., 126, 11, 3527-3577 (2016) · Zbl 1367.62283
[16] Koltchinskii, V.; Xia, D., Optimal estimation of low rank density matrices, J. Mach. Learn. Res., 16, 53, 1757-1792 (2015) · Zbl 1357.62221
[17] Li, R.-C., Relative perturbation theory: I. Eigenvalue and singular value variations, SIAM J. Matrix Anal. Appl., 19, 4, 956-982 (1998) · Zbl 0917.15009
[18] Li, R.-C., Relative perturbation theory: II. Eigenspace and singular subspace variations, SIAM J. Matrix Anal. Appl., 20, 2, 471-492 (1998) · Zbl 0917.15010
[19] Ma, Z., Sparse principal component analysis and iterative thresholding, Ann. Statist., 41, 2, 772-801 (2013) · Zbl 1267.62074
[20] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2010), Cambridge Univ. Press · Zbl 1288.81001
[21] Tao, M.; Wang, Y.; Chen, X., Fast convergence rates in estimating large volatility matrices using high-frequency financial data, Econometric Theory, 29, 4, 838-856 (2013) · Zbl 1283.91144
[22] Tao, M.; Wang, Y.; Zhou, H. H., Optimal sparse volatility matrix estimation for high-dimensional Itô processes with measurement errors, Ann. Statist., 41, 4, 1816-1864 (2013) · Zbl 1281.62178
[23] Tropp, J. A., User-friendly tail bounds for sums of random matrices, Found. Comput. Math., 12, 4, 389-434 (2012) · Zbl 1259.60008
[24] Vu, V. Q.; Cho, J.; Lei, J.; Rohe, K., Fantope projection and selection: A near-optimal convex relaxation of sparse PCA, Adv. Neural Inf. Process. Syst., 2, 2670-2678 (2013)
[25] Vu, V. Q.; Lei, J., Minimax sparse principal subspace estimation in high dimensions, Ann. Statist., 41, 6, 2905-2947 (2013) · Zbl 1288.62103
[26] Wang, Y., Quantum Monte Carlo simulation, Ann. Appl. Stat., 5, 2A, 669-683 (2011) · Zbl 1223.62174
[27] Wang, Y., Quantum computation and quantum information, Statist. Sci., 27, 3, 373-394 (2012) · Zbl 1331.81080
[28] Wang, Y., Asymptotic equivalence of quantum state tomography and noisy matrix completion, Ann. Statist., 41, 5, 2462-2504 (2013) · Zbl 1294.62006
[29] Wang, Y.; Song, X., Quantum science and quantum technology, Statist. Sci., 35, 1, 51-74 (2020) · Zbl 07292496
[30] Wang, Y.; Zou, J., Vast volatility matrix estimation for high-frequency financial data, Ann. Statist., 38, 2, 943-978 (2010) · Zbl 1183.62184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.