×

Dynamic transitions and bifurcations for a class of axisymmetric geophysical fluid flow. (English) Zbl 1461.76172


MSC:

76E20 Stability and instability of geophysical and astrophysical flows
76U60 Geophysical flows
86A05 Hydrology, hydrography, oceanography
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] P. Berloff and S. P. Meacham, The dynamics of an equivalent-barotropic model of the wind-driven circulation, J. Marine Res., 55 (1997), pp. 407-451, https://doi.org/10.1357/0022240973224319.
[2] P. Berloff and S. P. Meacham, On the stability of the wind-driven circulation, J. Marine. Res., 56 (1998), pp. 937-993, https://doi.org/10.1357/002224098765173437.
[3] S. L. Blumsack and P. J. Gierasch, Mars: the effects of topography on baroclinic instability, J. Atmos. Sci., 29 (1972), pp. 1081-1089, https://doi.org/10.1175/1520-0469(1972)029<1081:MTEOTO>2.0.CO;2.
[4] K. Bryan, A numerical investigation of nonlinear model of wind-driven ocean, J. Atmos. Sci., 20 (1963), pp. 594-606, https://doi.org/10.1175/1520-0469(1963)020<0594:ANIOAN>2.0.CO;2.
[5] M. Cai, M. Hernandez, K. W. Ong, and S. Wang, Baroclinic Instability and Transitions in a Two-layer Quasigeostrophic Channel Model, preprint, https://arxiv.org/abs/1705.07989, 2017.
[6] A. N. Carvalho, J. A. Langa, and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Appl. Math. Sci. 182, Springer, New York, 2013, https://doi.org/10.1007/978-1-4614-4581-4. · Zbl 1263.37002
[7] J. G. Charney, The dynamics of long waves in a baroclinic westly current, J. Meteor., 4 (1947), pp. 135-162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.
[8] J. G. Charney, J. Shukla, and K. C. Mo, Comparison of a barotropic blocking theory with observation, J. Atmos. Sci., 38 (1981), pp. 762-779, https://doi.org/10.1175/1520-0469(1981)038<0762:COABBT>2.0.CO;2.
[9] M. D. Chekroun, M. Ghil, and D. Neelin, Pullback attractor crisis in a delay differential ENSO model, in Advances in Nonlinear Geosciences, A. Tsonis, ed., Springer, Berlin, 2018, pp. 1-33, https://doi.org/10.1007/978-3-319-58895-7_1.
[10] M. D. Chekroun and H. Liu, Finite-horizon parameterizing manifolds, and applications to suboptimal control of nonlinear parabolic PDEs, Acta Appl. Math., 135 (2015), pp. 81-144, https://doi.org/10.1007/s10440-014-9949-1. · Zbl 1311.49010
[11] M. D. Chekroun, H. Liu, and S. Wang, Approximation of Stochastic Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs. I, Springer, Cham, 2015, https://doi.org/10.1007/978-3-319-12496-4. · Zbl 1319.60002
[12] M. D. Chekroun, H. Liu, and S. Wang, Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear SPDEs. II, Springer, Cham, 2015, https://doi.org/10.1007/978-3-319-12520-6. · Zbl 1331.37009
[13] M. D. Chekroun, E. Simonnet, and M. Ghil, Stochastic climate dynamics: Random attractors and time-dependent invariant measures, Phys. D, 240 (2011), pp. 1685-1700, https://doi.org/10.1016/j.physd.2011.06.005. · Zbl 1244.37046
[14] H. Dijkstra, T. Sengul, J. Shen, and S. Wang, Dynamic transitions of quasi-geostrophic channel flow, SIAM J. Appl. Math., 75 (2015), pp. 2361-2378, https://doi.org/10.1137/15M1008166. · Zbl 1329.35232
[15] E. T. Eady, Long waves and cyclone waves, Tellus, 1 (1949), pp. 33-52, https://doi.org/10.3402/tellusa.v1i3.8507.
[16] M. Ghil, The wind-driven ocean circulation: Applying dynamical systems theory to a climate problem, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), pp. 189-228, https://doi.org/10.3934/dcds.2017008. · Zbl 1418.86002
[17] D. Han, M. Hernandez, and Q. Wang, Dynamic bifurcation and transition in the Rayleigh-Bénard convection with internal heating and varying gravity, Commun. Math. Sci., 17 (2019), pp. 175-192, https://doi.org/10.4310/CMS.2019.v17.n1.a7. · Zbl 1415.37097
[18] D. Han, M. Hernandez, and Q. Wang, On the instabilities and transitions of the Western boundary current, Commun. Comput. Phys., 26 (2019), pp. 35-56, https://doi.org/10.4208/cicp.OA-2018-0066.
[19] M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-dimensional Dynamical Systems, Universitext, Springer-Verlag, London, 2011, https://doi.org/10.1007/978-0-85729-112-7. · Zbl 1230.34002
[20] M. Hernández and K. W. Ong, Stochastic Swift-Hohenberg equation with degenerate linear multiplicative noise, J. Math. Fluid Mech., 20 (2018), pp. 1353-1372, https://doi.org/10.1007/s00021-018-0368-3. · Zbl 1401.35357
[21] C. H. Hsia, C. S. Lin, T. Ma, and S. Wang, Tropical atmospheric circulations with humidity effects, Proc. A, 471 (2015), 20140353, https://doi.org/10.1098/rspa.2014.0353. · Zbl 1371.86020
[22] C. H. Hsia, T. Ma, and S. Wang, Rotating Boussinesq equations: Dynamic stability and transitions, Discrete Contin. Dyn. Syst., 28 (2010), pp. 99-130, https://doi.org/10.3934/dcds.2010.28.99. · Zbl 1191.86014
[23] G. R. Ierley, On the onset of inertial recirculation in barotropic general circulation models, J. Phys. Oceanogr., 17 (1987), pp. 2366-2374, https://doi.org/10.1175/1520-0485(1987)017<2366:OTOOIR>2.0.CO;2.
[24] G. R. Ierley and W. R. Young, Viscous instabilities in the western boundary layer, J. Phys. Oceanogr., 21 (1991), pp. 1323-1332, https://doi.org/10.1175/1520-0485(1991)021<1323:VIITWB>2.0.CO;2.
[25] P. E. Isachsen, Baroclinic instability and Eddy tracer transport across sloping bottom topography: How well does a modified Eady model do in primitive equation simulations?, Ocean Modell., 39 (2011), pp. 183-199, https://doi.org/10.1016/j.ocemod.2010.09.007.
[26] H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to Partial Differential Equations, Springer-Verlag, New York, 2012, https://doi.org/10.1007/978-1-4614-0502-3. · Zbl 1230.35002
[27] C. Kieu, T. Sengul, Q. Wang, and D. Yan, On the Hopf (double Hopf) bifurcations and transitions of two-layer western boundary currents, Commun. Nonlinear Sci. Numer. Simul., 65 (2018), pp. 196-215, https://doi.org/10.1016/j.cnsns.2018.05.010. · Zbl 1456.76055
[28] C. Kieu and Q. Wang, On the large-scale dynamics of \(f\)-plane zonally symmetric circulations, AIP Advances, 9 (2019), 015001, https://doi.org/10.1063/1.5051737.
[29] B. Legras and M. Ghil, Persistent anomalies, blocking and variations in atmospheric predictability, J. Atmos. Sci., 42 (1985), pp. 433-471, https://doi.org/10.1175/1520-0469(1985)042<0433:PABAVI>2.0.CO;2.
[30] L. Li, M. Hernandez, and K. W. Ong, Stochastic attractor bifurcation for the two-dimensional Swift-Hohenberg equation, Math. Methods Appl. Sci., 41 (2018), pp. 2105-2118. · Zbl 1391.35438
[31] R. Liu and Q. Wang, \(S^1\) attractor bifurcation analysis for an electrically conducting fluid flow between two rotating cylinders, Phys. D, 392 (2019), pp. 17-33, https://doi.org/10.1016/j.physd.2019.03.001. · Zbl 1451.76144
[32] C. H. Lu, Y. Mao, Q. Wang, and D. Yan, Hopf bifurcation and transition of three-dimensional wind-driven ocean circulation problem, J. Differential Equations, 267 (2019), pp. 2560-2593, https://doi.org/10.1016/j.jde.2019.03.021. · Zbl 1415.35032
[33] T. Ma and S. Wang, Rayleigh-Bénard convection: Dynamics and structure in the physical space, Commun. Math. Sci., 5 (2007), pp. 553-574, http://projecteuclid.org/euclid.cms/1188405668. · Zbl 1133.35426
[34] T. Ma and S. Wang, Dynamic transition theory for thermohaline circulation, Phys. D, 239 (2010), pp. 167-189, https://doi.org/10.1016/j.physd.2009.10.014. · Zbl 1190.37084
[35] T. Ma and S. Wang, Tropical atmospheric circulations: Dynamic stability and transitions, Discrete Contin. Dyn. Syst., 26 (2010), pp. 1399-1417, https://doi.org/10.3934/dcds.2010.26.1399. · Zbl 1186.86008
[36] T. Ma and S. Wang, Phase Transition Dynamics, Springer, New York, 2014, https://doi.org/10.1007/978-1-4614-8963-4. · Zbl 1285.82004
[37] A. Majda and X. Wang, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge University Press, Cambridge, UK, 2006, https://doi.org/10.1017/CBO9780511616778. · Zbl 1141.86001
[38] Y. Mao, Z. Chen, C. Kieu, and Q. Wang, On the stability and bifurcation of the non-rotating Boussinesq equation with the Kolmogorov forcing at a low Péclet number, Commun. Nonlinear Sci. Numer. Simul., 89 (2020), 105322, https://doi.org/10.1016/j.cnsns.2020.105322. · Zbl 1444.76058
[39] C. R. Mechoso, Baroclinic instability of flows along sloping boundaries, J. Atmos. Sci., 37 (1980), pp. 1393-1399, https://doi.org/10.1175/1520-0469(1980)037<1393:BIOFAS>2.0.CO;2.
[40] W. H. Munk, On the wind-driven ocean circulation, J. Meteor., 7 (1950), pp. 79-93, https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2.
[41] S. Ozer and T. Sengul, Transitions of spherical thermohaline circulation to multiple equilibria, J. Math. Fluid Mech., 20 (2018), pp. 499-515, https://doi.org/10.1007/s00021-017-0331-8. · Zbl 1458.76046
[42] Z. Pan, T. Sengul, and Q. Wang, On the viscous instabilities and transitions of two-layer model with a layered topography, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104978, https://doi.org/10.1016/j.cnsns.2019.104978. · Zbl 1444.76055
[43] J. Pedlosky, The stability of currents in the atmosphere and the ocean: Part II, J. Atmos. Sci., 21 (1964), pp. 342-353, https://doi.org/10.1175/1520-0469(1964)021<0342:TSOCIT>2.0.CO;2.
[44] J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1987, https://doi.org/10.1007/978-1-4612-4650-3. · Zbl 0713.76005
[45] S. Rambaldi and K. C. Mo, Forced stationary solutions in a barotropic channel: Multiple equilibria and theory of nonlinear resonance, J. Atmos. Sci., 41 (1984), pp. 3135-3146, https://doi.org/10.1175/1520-0469(1984)041<3135:FSSIAB>2.0.CO;2.
[46] T. Sengul, J. Shen, and S. Wang, Pattern formations of \(2\) D Rayleigh-Bénard convection with no-slip boundary conditions for the velocity at the critical length scales, Math. Methods Appl. Sci., 38 (2015), pp. 3792-3806, https://doi.org/10.1002/mma.3317. · Zbl 1333.76036
[47] T. Sengul and S. Wang, Pattern formation in Rayleigh-Bénard convection, Commun. Math. Sci., 11 (2013), pp. 315-343, https://doi.org/10.4310/CMS.2013.v11.n1.a10. · Zbl 1291.35235
[48] J. Shen, T. Tang, and L. L. Wang, Spectral Methods: Algorithms, Analysis, and Applications, Springer Ser. Comput. Math. 41, Springer, Heidelberg, 2011, https://doi.org/10.1007/978-3-540-71041-7. · Zbl 1227.65117
[49] E. Simonnet, M. Ghil, K. Ide, R. Temam, and S. Wang, Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part I: Steady-state solution, J. Phys. Oceanogr., 33 (2003), pp. 712-728, https://doi.org/10.1175/1520-0485(2003)33<712:LVISMO>2.0.CO;2.
[50] E. Simonnet, M. Ghil, K. Ide, R. Temam, and S. Wang, Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part II: Time-dependent solutions, J. Phys. Oceanogr., 33 (2003), pp. 729-752, https://doi.org/10.1175/1520-0485(2003)33<729:LVISMO>2.0.CO;2.
[51] A. Solodoch, A. L. Stewart, and J. C. McWilliams, Baroclinic instability of axially symmetric flow over sloping bathymetry, J. Fluid Mech., 799 (2016), pp. 265-296, https://doi.org/10.1017/jfm.2016.376.
[52] Q. Wang, Stability and bifurcation of a viscous incompressible plasma fluid contained between two concentric rotating cylinders, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), pp. 543-563, https://doi.org/10.3934/dcdsb.2014.19.543. · Zbl 1292.76078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.