×

zbMATH — the first resource for mathematics

Linear instability of viscoelastic pipe flow. (English) Zbl 1461.76018
Summary: A modal stability analysis shows that pressure-driven pipe flow of an Oldroyd-B fluid is linearly unstable to axisymmetric perturbations, in stark contrast to its Newtonian counterpart which is linearly stable at all Reynolds numbers. The dimensionless groups that govern stability are the Reynolds number \(Re = \rho U_{\max} R /\eta\), the elasticity number \(E = \lambda \eta /(R^2 \rho)\) and the ratio of solvent to solution viscosity \(\beta = \eta_s/\eta\); here, \(R\) is the pipe radius, \(U_{\max}\) is the maximum velocity of the base flow, \(\rho\) is the fluid density and \(\lambda\) is the microstructural relaxation time. The unstable mode has a phase speed close to \(U_{\max}\) over the entire unstable region in \((Re, E, \beta)\) space. In the asymptotic limit \(E (1-\beta) \ll 1\), the critical Reynolds number for instability diverges as \(Re_c \sim (E (1-\beta))^{-3/2}\), the critical wavenumber increases as \(k_c \sim (E (1-\beta))^{-1/2}\), and the unstable eigenfunction is localized near the centreline, implying that the unstable mode belongs to a class of viscoelastic centre modes. In contrast, for \(\beta \rightarrow 1\) and \(E \sim 0.1\), \(Re_c\) can be as low as \(O(100)\), with the unstable eigenfunction no longer being localized near the centreline. Unlike the Newtonian transition which is dominated by nonlinear processes, the linear instability discussed in this study could be very relevant to the onset of turbulence in viscoelastic pipe flows. The prediction of a linear instability is, in fact, consistent with several experimental studies on pipe flow of polymer solutions, ranging from reports of ‘early turbulence’ in the 1970s to the more recent discovery of ‘elasto-inertial turbulence’ [D. Samanta et al., “Elasto-inertial turbulence”, Proc. Natl. Acad. Sci. USA 110, No. 26, 10557–10562 (2013; doi:10.1073/pnas.1219666110)]. The instability identified in this study comprehensively dispels the prevailing notion of pipe flow of viscoelastic fluids being linearly stable in the \(Re-W\) plane (\(W = Re \, E\) being the Weissenberg number), marking a possible paradigm shift in our understanding of transition in rectilinear viscoelastic shearing flows. The predicted unstable eigenfunction should form a template in the search for novel nonlinear elasto-inertial states, and could provide an alternate route to the maximal drag-reduced state in polymer solutions. The latter has thus far been explained in terms of a viscoelastic modification of the nonlinear Newtonian coherent structures.

MSC:
76A10 Viscoelastic fluids
76F06 Transition to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anna, S. L. & Mckinley, G. H.2001Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol.45 (1), 115-138.
[2] Avila, K., Moxey, D., De Lozar, A., Barkley, D. & Hof, B.2011The onset of turbulence in pipe flow. Science333, 192-196. · Zbl 1411.76035
[3] Avila, M., Mellibovsky, F., Roland, N. & Hof, B.2013Streamwise localized solution at the onset of turbulence in pipe flow. Phys. Rev. Lett.110, 224502.
[4] Balmforth, N. J., Morrison, P. J. & Thiffeault, J. L.2013 Pattern formation in Hamiltonian systems with continuous spectra; a normal-form single-wave model. arXiv:1303.0065.
[5] Barkley, D.2016Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech.803, P1. · Zbl 1454.76047
[6] Batchelor, G. K. & Gill, A. E.1962Analysis of the stability of axisymmetric jets. J. Fluid Mech.14, 529-551. · Zbl 0118.21102
[7] Beris, A. N. & Dimitropoulos, C. D.1999Pseudospectral simulation of turbulent viscoelastic channel flow. Comput. Meth. Appl. Mech. Engng180, 365-392. · Zbl 0966.76064
[8] Bertola, V., Meulenbroek, B., Wagner, C., Storm, C., Morozov, A., Van Saarloos, W. & Bonn, D.2003Experimental evidence for an intrinsic route to polymer melt fracture phenomena: a nonlinear instability of viscoelastic Poiseuille flow. Phys. Rev. Lett.90 (11), 114502.
[9] Bird, R. B., Armstrong, R. C. & Hassager, O.1977Dynamics of Polymeric Liquids. Vol 1. Fluid Mechanics. John Wiley.
[10] Bird, R. B., Dotson, P. J. & Johnson, N. L.1980Polymer solution rheology based on a finitely extensible bead-spring chain model. J. Non-Newtonian Fluid Mech.7, 213-235. · Zbl 0432.76012
[11] Bodiguel, H., Beaumont, H., Machado, A., Martinie, L., Kellay, H. & Colin, A.2015Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids. Phys. Rev. Lett.114, 028302(5).
[12] Boger, D. V. & Nguyen, H.1978A model viscoelastic fluid. Polym. Engng Sci.18, 1037-1043.
[13] Boyd, J. P.2000Chebyshev and Fourier Spectral Methods. Dover.
[14] Budanur, N. B., Short, K. Y., Farazmand, M., Willis, A. P. & Cvitanović, P.2017Relative periodic orbits form the backbone of turbulent pipe flow. J. Fluid Mech.833, 274-301. · Zbl 1419.76261
[15] Butler, K. M. & Farrell, B. F.1992Three-dimensional optimal perturbations in viscous shear flows. Phys. Fluids A4, 1637-1650.
[16] Castro, W. & Squire, W.1968The effect of polymer additives on transition in pipe flow. Appl. Sci. Res.18, 81-96.
[17] Chandra, B., Shankar, V. & Das, D.2018Onset of transition in the flow of polymer solutions through microtubes. J. Fluid Mech.844, 1052-1083. · Zbl 1429.76058
[18] Chandra, B., Shankar, V. & Das, D.2020Early transition, relaminarization and drag reduction in the flow of polymer solutions through microtubes. J. Fluid Mech.885, A47. · Zbl 07154409
[19] Chantry, M., Willis, A. P. & Kerswell, R. R.2014Genesis of streamwise-localized solutions from globally periodic traveling waves in pipe flow. Phys. Rev. Lett.112, 164501.
[20] Chaudhary, I., Garg, P., Shankar, V. & Subramanian, G.2019Elasto-inertial wall-mode instabilities in viscoelastic channel flows. J. Fluid Mech.881, 119-163. · Zbl 1430.76037
[21] Chaudhary, I., Shankar, V. & Subramanian, G.2020 Stability of viscoelastic pipe flow in the limit of infinite Reynolds and Weissenberg numbers. (In preparation.)
[22] Chokshi, P. & Kumaran, V.2009Stability of the plane shear flow of dilute polymeric solutions. Phys. Fluids21, 014109. · Zbl 1183.76150
[23] Choueiri, G. H., Lopez, J. M. & Hof, B. J.2018Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett.120 (12), 124501.
[24] Clasen, C., Plog, J. P., Kulicke, W.-M., Owens, M., Macosko, C., Scriven, L. E., Verani, M. & Mckinley, G. H.2006How dilute are dilute solutions in extensional flows?J. Rheol.50 (6), 849-881.
[25] Clever, R. M. & Busse, F. H.1992Three-dimensional convection in a horizontal fluid layer subjected to a constant shear. J. Fluid Mech.234, 511-527. · Zbl 0744.76052
[26] Corcos, G. M. & Sellars, J. R.1959On the stability of fully developed pipe flow. J. Fluid Mech.5, 97-112. · Zbl 0084.42005
[27] De Angelis, E., Casciola, C. M. & Piva, R.2002DNS of wall turbulence: dilute polymers and self-sustaining mechanisms. Comput. Fluids31, 495-507. · Zbl 1075.76556
[28] Draad, A. A., Kuiken, G. D. C. & Nieuwstadt, F. T. M.1998Laminar-turbulent transition in pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech.377, 267-312. · Zbl 0941.76528
[29] Drazin, P. G. & Reid, W. H.1981Hydrodynamic Stability. Cambridge University Press. · Zbl 0449.76027
[30] Dubief, Y., Page, J., Kerswell, R. R., Terrapon, V. E. & Steinberg, V.2020 A first coherent structure in elasto-inertial turbulence. arXiv:2006.06770.
[31] Dubief, Y., Terrapon, V. E. & Soria, J.2013On the mechanism of elasto-inertial turbulence. Phys. Fluids25 (11), 110817.
[32] Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K.2004On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech.514, 271-280. · Zbl 1067.76052
[33] Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J.2007Turbulence transition in pipe flow. Annu. Rev. Fluid Mech.39, 447-468.
[34] El-Kareh, A. W. & Leal, L. G.1989Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion. J. Non-Newtonian Fluid Mech.33, 257-287. · Zbl 0679.76004
[35] Forame, P. C., Hansen, R. J. & Little, R. C.1972Observations of early turbulence in the pipe flow of drag reducing polymer solutions. AIChE J.18 (1), 213-217.
[36] Garg, P., Chaudhary, I., Khalid, M., Shankar, V & Subramanian, G.2018Viscoelastic pipe flow is linearly unstable. Phys. Rev. Lett.121, 024502.
[37] Garg, V. K. & Rouleau, W. T.1972Linear spatial stability of pipe Poiseuille flow. J. Fluid Mech.54, 113-127. · Zbl 0236.76038
[38] Giles, W. B. & Pettit, W. T.1967Stability of dilute viscoelastic flows. Nature216, 470-472.
[39] Gill, A. E.1965aA mechanism for instability of plane Couette flow and of Poiseuille flow in a pipe. J. Fluid Mech.21, 503-511. · Zbl 0125.17903
[40] Gill, A. E.1965bOn the behaviour of small disturbances to Poiseuille flow in a circular pipe. J. Fluid Mech.21, 145-172. · Zbl 0129.20301
[41] Goldstein, R. J., Adrian, R. J. & Kreid, D. K.1969Turbulent and transition pipe flow of dilute aqueous polymer solutions. Ind. Engng Chem. Fundam.8 (3), 498-502.
[42] Gorodtsov, V. A. & Leonov, A. I.1967On a linear instability of a plane parallel Couette flow of viscoelastic fluid. Z. Angew. Math. Mech.31, 310-319. · Zbl 0166.45101
[43] Graham, M. D.1998Effect of axial flow on viscoelastic Taylor-Couette instability. J. Fluid Mech.360, 341-374. · Zbl 0947.76023
[44] Graham, M. D.2014Drag reduction and the dynamics of turbulence in simple and complex fluids. Phys. Fluids26, 101301.
[45] Grillet, A. M., Bogaerds, A. C. B., Peters, G. W. M. & Baaijens, F. P. T.2002Stability analysis of constitutive equations for polymer melts in viscometric flows. J. Non-Newtonian Fluid Mech.103, 221-250. · Zbl 1058.76528
[46] Groisman, A. & Steinberg, V.2000Elastic turbulence in a polymer solution flow. Nature405, 53-55.
[47] Grossmann, S.2000The onset of shear flow turbulence. Rev. Mod. Phys.72, 603-618.
[48] Gupta, A. & Vincenzi, D.2019Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence. J. Fluid Mech.870, 405-418. · Zbl 1419.76037
[49] Hansen, R. J.1973Stability of laminar pipe flows of drag reducing polymer solutions in the presence of high-phase-velocity disturbances. AIChE J.19, 298-304.
[50] Hansen, R. J., Little, R. & Forame, P. G.1973Experimental and theoretical studies of early turbulence. J. Chem. Engng Japan6 (4), 310-314.
[51] Hansen, R. J. & Little, R. C.1974Early turbulence and drag reduction phenomena in larger pipes. Nature252, 690.
[52] Ho, T. C. & Denn, M. M.1977Stability of plane Poiseuille flow of a highly elastic liquid. J. Non-Newtonian Fluid Mech.3 (2), 179-195. · Zbl 0414.76008
[53] Hoyt, J. W.1977Laminar-turbulent transition in polymer solutions. Nature270, 508-509.
[54] Jones, W. M., Marshall, D. E. & Walker, P. C.1976The flow of dilute aqueous solutions of macromolecules in various geometries. II. Straight pipes of circular cross-section. J. Phys. D: Appl. Phys.9 (5), 735-752.
[55] Kaffel, A. & Renardy, M.2010On the stability of plane parallel viscoelastic shear flows in the limit of infinite Weissenberg and Reynolds numbers. J. Non-Newtonian Fluid Mech.165, 1670-1676. · Zbl 1274.76205
[56] Kerswell, R.2018Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech.50, 319-345. · Zbl 1384.76022
[57] Kerswell, R. R.2005Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity18 (6), R17-R44.
[58] Khalid, M., Chaudhary, I., Garg, P., Shankar, V. & Subramanian, G.2021 The center-mode instability of viscoelastic plane-Poiseuille flow. J. Fluid Mech. (submitted).
[59] Khorrami, M. R., Malik, M. R. & Ash, R. L.1989Application of spectral collocation techniques to the stability of swirling flows. J. Comput. Phys.81, 206-229. · Zbl 0662.76057
[60] Kumar, A. S. & Shankar, V.2005Instability of high-frequency modes in viscoelastic plane Couette flow past a deformable wall at low and finite Reynolds number. J. Non-Newtonian Fluid Mech.125, 121-141. · Zbl 1187.76656
[61] Larson, R. G.1988Constitutive Equations for Polymer Melts and Solutions. Butterworths.
[62] Larson, R. G.1992Instabilities in viscoelastic flows. Rheol. Acta31, 213-263.
[63] Larson, R. G., Muller, S. J. & Shaqfeh, E. S. G.1994The effect of fluid rheology on the elastic Taylor-Couette instability. J. Non-Newtonian Fluid Mech.51, 195-225.
[64] Larson, R. G., Shaqfeh, E. S. G. & Muller, S. J.1990A purely elastic instability in Taylor-Couette flow. J. Fluid Mech.218, 573-600. · Zbl 0706.76011
[65] Lee, K. C. & Finlayson, B. A.1986Stability of plane Poiseuille and Couette flow of a Maxwell fluid. J. Non-Newtonian Fluid Mech.21, 65-78. · Zbl 0587.76059
[66] Li, W. & Graham, M. D.2007Polymer induced drag reduction in exact coherent structures of plane Poiseuille flow. Phys. Fluids19, 083101.
[67] Li, W., Xi, L. & Graham, M. D.2006Nonlinear travelling waves as a framework for understanding turbulent drag reduction. J. Fluid Mech.565, 353-362. · Zbl 1177.76169
[68] Li, X.-B., Li, F.-C., Cai, W.-H., Zhang, H.-N. & Yang, J.-C.2012Very-low-Re chaotic motions of viscoelastic fluid and its unique applications in microfluidic devices: a review. Exp. Therm. Fluid Sci.39, 1-16.
[69] Lopez, J. M., Choueiri, G. H. & Hof, B.2019Dynamics of viscoelastic pipe flow at low Reynolds numbers in the maximum drag reduction limit. J. Fluid Mech.874, 699-719. · Zbl 1419.76040
[70] Mack, L. M.1976A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech.73, 497-520. · Zbl 0339.76030
[71] Meseguer, A. & Trefethen, L. N.2003Linearized pipe flow to Reynolds number \(10^7\). J. Comput. Phys.186, 178-197. · Zbl 1047.76565
[72] Meulenbroek, B., Storm, C., Bertola, V., Wagner, C., Bonn, D. & Van Saarloos, W.2003Intrinsic route to melt fracture in polymer extrusion: a weakly nonlinear subcritical instability of viscoelastic Poiseuille flow. Phys. Rev. Lett.90, 024502.
[73] Meulenbroek, B., Storm, C., Morozov, A. N. & Van Saarloos, W.2004Weakly nonlinear subcritical instability of viscoelastic Poiseuille flow. J. Non-Newtonian Fluid Mech.116, 235-268. · Zbl 1106.76367
[74] Morozov, A. N. & Van Saarloos, W.2005Subcritical finite-amplitude solutions for plane Couette flow of viscoelastic fluids. Phys. Rev. Lett.95, 024501.
[75] Morozov, A. N. & Van Saarloos, W.2007An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows. Phys. Rep.447, 112-143.
[76] Mullin, T.2011Experimental studies of transition to turbulence in a pipe. Annu. Rev. Fluid Mech.43, 1-24. · Zbl 1210.76005
[77] Nagata, M.1990Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech.217, 519-527.
[78] Page, J., Dubief, Y. & Kerswell, R. R.2020 Exact travelling wave solutions in viscoelastic channel flow. Phys. Rev. Lett.125, 154501.
[79] Pakdel, P. & Mckinley, G. H.1996Elastic instability and curved streamlines. Phys. Rev. Lett.77, 2459-2462.
[80] Pan, L., Morozov, A., Wagner, C. & Arratia, P. E.2013Nonlinear elastic instability in channel flows at low Reynolds numbers. Phys. Rev. Lett.110, 174502.
[81] Pfenniger, W.1961 Transition in the inlet length of tubes at high Reynolds numbers. In Boundary Layer and Flow Control (ed. G. V. Lachman), pp. 970-980. Pergamon.
[82] Prabhakar, R., Gadkari, S., Gopesh, T. & Shaw, M. J.2016Influence of stretching induced self-concentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions. J. Rheol.60 (3), 345-366.
[83] Pringle, C. C. T. & Kerswell, R. R.2010Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett.105, 154502.
[84] Rallison, J. M. & Hinch, E. J.1995Instability of a high-speed submerged elastic jet. J. Fluid Mech.288, 311-324. · Zbl 0842.76027
[85] Ram, A. & Tamir, A.1964Structural turbulence in polymer solutions. J. Appl. Polym. Sci.8 (6), 2751-2762.
[86] Reddy, S. C. & Henningson, D. S.1993Energy growth in viscous channel flows. J. Fluid Mech.252, 209-238. · Zbl 0789.76026
[87] Renardy, M. & Renardy, Y.1986Linear stability of plane Couette flow of an upper convected Maxwell fluid. J. Non-Newtonian Fluid Mech.22, 23-33. · Zbl 0608.76006
[88] Reynolds, O.1883An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. A174, 935-82. · JFM 16.0845.02
[89] Salwen, H. & Grosch, C. H.1972The stability of Poiseuille flow in a pipe of circular cross-section. J. Fluid Mech.54, 93-112. · Zbl 0236.76037
[90] Samanta, D., Dubief, Y., Holzner, M., Schäfer, C., Morozov, A. N., Wagner, C. & Hof, B.2013Elasto-inertial turbulence. Proc. Natl Acad. Sci. USA110, 10557-10562.
[91] Schlichting, H. & Gersten, K.2000Boundary-Layer Theory. Springer. · Zbl 0940.76003
[92] Schmid, P. J.2007Nonmodal stability theory. Annu. Rev. Fluid Mech.39, 129-162. · Zbl 1296.76055
[93] Schmid, P. J. & Henningson, D. S.1994Optimal energy density growth in Hagen-Poiseuille flow. J. Fluid Mech.277, 197-225. · Zbl 0888.76024
[94] Schmid, P. J. & Henningson, D. S.2001Stability and Transition in Shear Flows. Springer.
[95] Shaqfeh, E. S. G.1996Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech.28, 129-185.
[96] Shekar, A., Mcmullen, R. M., Wang, S. N., Mckeon, B. J. & Graham, M. D.2019Critical-layer structures and mechanisms in elastoinertial turbulence. Phys. Rev. Lett.122, 124503.
[97] Sibilla, S. & Baron, A.2002Polymer stress statistics in the near-wall turbulent flow of a drag-reducing solution. Phys. Fluids14, 1123-1136.
[98] Sid, S., Terrapon, V. E. & Dubief, Y.2018Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction. Phys. Rev. Fluids3, 011301.
[99] Srinivas, S. S. & Kumaran, V.2017Effect of viscoelasticity on the soft-wall transition and turbulence in a microchannel. J. Fluid Mech.812, 1076-1118. · Zbl 1383.76193
[100] Stone, P. A. & Graham, M. D.2003Polymer dynamics in a model of the turbulent buffer layer. Phys. Fluids15, 1247-1256. · Zbl 1186.76502
[101] Stone, P. A., Roy, A., Larson, R. G., Waleffe, F. & Graham, M. D.2004Polymer drag reduction in exact coherent structures of plane shear flow. Phys. Fluids16, 3470-3482. · Zbl 1187.76502
[102] Stone, P. A., Waleffe, F. & Graham, M. D.2002Toward a structural understanding of turbulent drag reduction: nonlinear coherent states in viscoelastic shear flows. Phys. Rev. Lett.89, 208301.
[103] Stuart, J. T.1960On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech.9, 353-370. · Zbl 0096.21102
[104] Subramanian, G., Reddy, J. S. & Roy, A.2020 Elastic instability of a vortex column. (In preparation.)
[105] Sureshkumar, R. & Beris, A. N.1995Linear stability analysis of viscoelastic Poiseuille flow using an Arnoldi-based orthogonalization algorithm. J. Non-Newtonian Fluid Mech.56, 151-182.
[106] Sureshkumar, R., Beris, A. N. & Handler, R. A.1997Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids9, 743-755.
[107] Toms, B. A.1977On the early experiments on drag reduction by polymers. Phys. Fluids20, S3-S5.
[108] Trefethen, L. N.2000Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics.
[109] Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A.1993Hydrodynamic stability without eigenvalues. Science261, 578-584. · Zbl 1226.76013
[110] Virk, P. S.1975aDrag reduction by collapsed and extended polyelectrolytes. Nature253, 109-110.
[111] Virk, P. S.1975bDrag reduction fundamentals. AIChE J.21, 625-656.
[112] Virk, P. S., Sherman, D. C. & Wagger, D. L.1997Additive equivalence during turbulent drag reduction. AIChE J.43, 3257-3259.
[113] Waleffe, F.1997On a self-sustaining process in shear flows. Phys. Fluids9, 883-900.
[114] Waleffe, F.1998Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett.81, 4140.
[115] Watson, J.1960On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow. J. Fluid Mech.9, 371-89. · Zbl 0096.21103
[116] Wedin, H. & Kerswell, R. R.2004Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech.508, 333-371. · Zbl 1065.76072
[117] White, C. M. & Mungal, M. G.2008Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech.40, 235-256. · Zbl 1229.76043
[118] White, W. D. & Mceligot, D. M.1970Transition of mixtures of polymers in a dilute aqueous solution. Trans. ASME: J. Basic Engng92, 411-418.
[119] Wilson, H. J. & Loridan, V.2015Linear instability of a highly shear-thinning fluid in channel flow. J. Non-Newtonian Fluid Mech.223, 200-208.
[120] Wilson, H. J. & Rallison, J. M.1997Short wave instability of co-extruded elastic liquids with matched viscosities. J. Non-Newtonian Fluid Mech.72, 237-251.
[121] Wilson, H. J., Renardy, M. & Renardy, Y.1999Structure of the spectrum in zero Reynolds number shear flow of the UCM and Oldroyd-B liquids. J. Non-Newtonian Fluid Mech.80, 251-268. · Zbl 0956.76025
[122] Wygnanski, I., Sokolov, M. & Friedman, D.1975On transition in a pipe. Part 2. The equilibrium puff. J. Fluid Mech.69 (2), 283-304.
[123] Wygnanski, I. J. & Champagne, F. H.1973On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech.59 (2), 281-335.
[124] Xi, L.2019Turbulent drag reduction by polymer additives: fundamentals and recent advances. Phys. Fluids31, 121302.
[125] Xi, L. & Graham, M. D.2010Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids. Phys. Rev. Lett.104, 218301.
[126] Xi, L. & Graham, M. D.2012Dynamics on the laminar-turbulent boundary and the origin of the maximum drag reduction asymptote. Phys. Rev. Lett.108, 028301.
[127] Zakin, J. L., Ni, C. C., Hansen, R. J. & Reischman, M. M.1977Laser doppler velocimetry studies of early turbulence. Phys. Fluids20, S85-S88.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.