×

Distributed finite-time integral sliding-mode control for multi-agent systems with multiple disturbances based on nonlinear disturbance observers. (English) Zbl 1460.93023

Summary: This paper proposes a finite-time consensus control algorithm based on nonlinear integral sliding-mode control for second-order multi-agent systems (MASs) with mismatched and matched disturbances. Firstly, a nonlinear finite-time disturbance observer is established to estimate the states and mismatched disturbances of the agent. Secondly, a dynamic integral sliding-mode (ISM) surface is designed by employing the estimates of mismatched disturbances. Then, based on the designed ISM and disturbance observer, the discontinuous or continuous campsite control protocols are respectively developed to guarantee the consensus for MASs in finite time with active anti-disturbance control. Finally, numerical simulation results illustrate the effectiveness of the proposed consensus control algorithm.

MSC:

93B12 Variable structure systems
93A16 Multi-agent systems
93D50 Consensus
93C73 Perturbations in control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Qin, L.; He, X.; Zhou, D., Distributed proportion-integration-derivation formation control for second-order multi-agent systems with communication time delays, Neurocomputing, 267, 271-282 (2017) · doi:10.1016/j.neucom.2017.05.088
[2] Yang, H. Y.; Zhang, Z.; Zhang, S., Consensus of second-order multi-agent systems with exogenous disturbances, International Journal of Robust & Nonlinear Control, 21, 9, 945-956 (2011) · Zbl 1215.93014 · doi:10.1002/rnc.1631
[3] Sun, Y.; Wang, Y.; Zhao, D., Flocking of multi-agent systems with multiplicative and independent measurement noises, Physica A Statistical Mechanics & Its Applications, 440, 60, 81-89 (2015) · Zbl 1400.92615 · doi:10.1016/j.physa.2015.08.005
[4] Lin, P.; Ren, W.; Song, Y., Distributed multi-agent optimization subject to nonidentical constraints and communication delays, Automatica, 65, 120-131 (2016) · Zbl 1328.93024 · doi:10.1016/j.automatica.2015.11.014
[5] Wang, X.; Liu, X.; She, K., Pinning impulsive synchronization of complex dynamical networks with various time-varying delay sizes, Nonlinear Analysis Hybrid Systems, 26, 307-318 (2017) · Zbl 1379.34049 · doi:10.1016/j.nahs.2017.06.005
[6] Yang, H.; Zhu, Z.; Zhang, S., Consensus of second-order delayed multi-agent systems with leader-following, European Journal of Control, 16, 2, 188-199 (2010) · Zbl 1196.93006 · doi:10.3166/ejc.16.188-199
[7] Zhang, G.; Deng, Y.; Zhang, W., Novel DVS guidance and path-following control for under-actuated ships in presence of multiple static and moving obstacles, Ocean Engineering, 170, 11, 100-110 (2018) · doi:10.1016/j.oceaneng.2018.10.009
[8] Chen, Y.; Ai, X.; Zhang, Y., Spherical formation tracking control for second-order agents with unknown general flowfields and strongly connected topologies, International Journal of Robust and Nonlinear Control, 29, 11, 3715-3736 (2019) · Zbl 1426.93004 · doi:10.1002/rnc.4576
[9] Chen, Y.; Wang, Z.; Zhang, Y., A geometric extension design for spherical formation tracking control of second-order agents in unknown spatiotemporal flowfields, Nonlinear Dynamics, 88, 2, 1173-1186 (2017) · Zbl 1375.70076 · doi:10.1007/s11071-016-3303-2
[10] Chen, Y.; Zhang, Y.; Wang, Z., An adaptive backstepping design for formation tracking motion in an unknown Eulerian specification flowfield, Journal of the Franklin Institute, 354, 14, 6217-6233 (2017) · Zbl 1373.93012 · doi:10.1016/j.jfranklin.2017.07.020
[11] Mo, L.; Niu, Y.; Pan, T., Consensus of heterogeneous multi-agent systems with switching jointly-connected interconnection, Physica A Statistical Mechanics & Its Applications, 427, 132-140 (2015) · doi:10.1016/j.physa.2015.01.070
[12] Wang, Q.; Fu, J.; Wang, J., Fully distributed containment control of high-order multi-agent systems with nonlinear dynamics, Systems & Control Letters, 99, 33-39 (2017) · Zbl 1353.93010 · doi:10.1016/j.sysconle.2016.11.003
[13] Hu, J.; Xiao, Z.; Zhou, Y., Robust consensus tracking control of a second-order leader-follower multi-agent system, IFAC Proceedings Volumes, 46, 20, 130-135 (2013) · doi:10.3182/20130902-3-CN-3020.00019
[14] Li, W.; Xie, L.; Zhang, J. F., Containment control of leader-following multi-agent systems with Markovian switching network topologies and measurement noises, Automatica, 51, 263-267 (2015) · Zbl 1309.93012 · doi:10.1016/j.automatica.2014.10.070
[15] Fu, J.; Wang, J., Robust finite-time containment control of general linear multi-agent systems under directed communication graphs, Journal of the Franklin Institute, 353, 12, 2670-2689 (2016) · Zbl 1347.93103 · doi:10.1016/j.jfranklin.2016.05.015
[16] Wang, F. Y.; Yang, H. Y.; Liu, Z. X., Containment control of leader-following multi-agent systems with jointly-connected topologies and time-varying delays, Neurocomputing, 260, 341-348 (2017) · doi:10.1016/j.neucom.2017.04.049
[17] Yang, H.; Wang, F.; Han, F., Containment control of fractional order multi-agent systems with time delays, IEEE/CAA Journal of Automatica Sinica, 5, 3, 727-732 (2018) · doi:10.1109/JAS.2016.7510211
[18] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM J. Contr. Opti., 38, 3, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[19] Xiao, Q. Y.; Wu, Z. H.; Peng, L., Fast finite-time consensus tracking of second-order multi-agent systems with a virtual leader, Journal of Networks, 9, 12, 3268-3274 (2014) · doi:10.4304/jnw.9.12.3268-3274
[20] Wang, X.; Li, S.; Shi, P., Distributed finite-time containment control for double-integrator multiagent systems, IEEE Transactions on Cybernetics, 44, 9, 1518-1528 (2017) · doi:10.1109/TCYB.2013.2288980
[21] Cortes, J., Finite-time convergent gradient flows with applications to network consensus, Automatica, 42, 11, 1993-2000 (2006) · Zbl 1261.93058 · doi:10.1016/j.automatica.2006.06.015
[22] Zhang, Y.; Yang, Y., Distributed finite-time tracking control for nonlinear multi-agent systems subject to external disturbances, International Journal of Control, 86, 1, 29-40 (2013) · Zbl 1278.93134 · doi:10.1080/00207179.2012.717722
[23] Chen, G.; Yue, Y.; Song, Y., Finite-time cooperative-tracking control for networked Euler-Lagrange systems, IET Control Theory & Applications, 7, 11, 1487-1497 (2013) · doi:10.1049/iet-cta.2013.0205
[24] Xiao, F.; Wang, L.; Chen, J., Finite-time formation control for multiagent systems, Automatica, 45, 11, 2605-2611 (2009) · Zbl 1180.93006 · doi:10.1016/j.automatica.2009.07.012
[25] Zhang, G.; Huang, C.; Zhang, X., Practical constrained dynamic positioning control for uncertain ship through the minimal learning parameter technique, IET Control Theory & Applications, 12, 18, 2526-2533 (2018) · doi:10.1049/iet-cta.2018.5036
[26] Lu, Y.; Zhang, G.; Sun, Z., Adaptive cooperative formation control of autonomous surface vessels with uncertain dynamics and external disturbances, Ocean Engineering, 167, 36-44 (2018) · doi:10.1016/j.oceaneng.2018.08.020
[27] Yang, H.; Yang, Y.; Han, F., Containment control of heterogeneous fractional-order multi-agent systems, Journal of the Franklin Institute, 356, 2, 752-765 (2019) · Zbl 1406.93041 · doi:10.1016/j.jfranklin.2017.09.034
[28] Zhang, G.; Tian, B.; Zhang, W., Optimized robust control for industrial unstable process via the mirror-mapping method, ISA Transactions, 86, 9-17 (2019) · doi:10.1016/j.isatra.2018.10.040
[29] Ou, L. L.; Zhang, W. D.; Yu, L., Low-order stabilization of LTI systems with time delay, IEEE Transactions on Automatic Control, 54, 4, 774-787 (2009) · Zbl 1367.93531 · doi:10.1109/TAC.2009.2014935
[30] Lu, Y.; Zhang, G.; Sun, Z., Robust adaptive formation control of underactuated autonomous surface vessels based on MLP and DOB, Nonlinear Dynamics, 94, 1, 503-519 (2018) · Zbl 1412.93069 · doi:10.1007/s11071-018-4374-z
[31] Wang, M.; Ren, X.; Chen, Q., Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance, ISA Transactions, 72, 147-160 (2017) · doi:10.1016/j.isatra.2017.09.018
[32] Sun, Z.; Zhang, G.; Lu, Y., Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation, ISA Transactions, 72, 15-24 (2017) · doi:10.1016/j.isatra.2017.11.008
[33] Zhao, Q.; Dong, X.; Liang, Z., Distributed cooperative guidance for multiple missiles with fixed and switching communication topologies, Chinese Journal of Aeronautics, 30, 4, 1570-1581 (2017) · Zbl 1393.93029 · doi:10.1016/j.cja.2017.06.009
[34] Yang, J.; Zolotas, A.; Chen, W. H., Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach, ISA Transactions, 50, 3, 389-396 (2011) · doi:10.1016/j.isatra.2011.01.006
[35] Li S H, Yang J, Chen W H, et al., Disturbance Observer-Based Control: Methods and Applications, CRC Press, Inc. 2014.
[36] Yang, J.; Li, S. H.; Yu, X. H., Sliding-mode control for systems with mismatched uncertainties via a disturbance observer, IEEE Transactions on Industrial Electronics, 60, 1, 160-169 (2012) · doi:10.1109/TIE.2012.2183841
[37] Wang, X. Y.; Li, S. H.; Lam, J., Distributed active anti-disturbance output consensus algorithms for higher-order multi-agent systems with mismatched disturbances, Automatica, 74, 30-37 (2016) · Zbl 1348.93020 · doi:10.1016/j.automatica.2016.07.010
[38] Mondal, S.; Su, R.; Xie, L., Heterogeneous consensus of higher-order multi-agent systems with mismatched uncertainties using sliding mode control, International Journal of Robust and Nonlinear Control, 27, 13, 2303-2320 (2016) · Zbl 1371.93012 · doi:10.1002/rnc.3684
[39] Zhang, Z.; Li, S.; Luo, S., Terminal guidance laws of missile based on ISMC and NDOB with impact angle constraint, Aerospace Science & Technology, 31, 1, 30-41 (2013) · doi:10.1016/j.ast.2013.09.003
[40] Khalil, H. K., Nonlinear Systems (2002), New York: Prentice Hall, New York · Zbl 1003.34002
[41] Levant, A., Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control, 76, 9-10, 924-942 (2003) · Zbl 1049.93014 · doi:10.1080/0020717031000099029
[42] Shtessel, Y. B.; Shkolnikov, I. A.; Levant, A., Smooth second-order sliding modes: Missile guidance application, Automatica, 43, 8, 1470-1476 (2007) · Zbl 1130.93392 · doi:10.1016/j.automatica.2007.01.008
[43] Davila A, Moreno J A, and Fridman L, Optimal Lyapunov function selection for reaching time estimation of super twisting algorithm, 48th IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 2009, 8405-8410.
[44] Hong, Y. G.; Xu, Y. S.; Huang, J., Finite-time control for robot manipulators, Systems & Control Letters, 46, 4, 243-253 (2002) · Zbl 0994.93041 · doi:10.1016/S0167-6911(02)00130-5
[45] Yu, S.; Long, X., Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode, Automatica, 54, 158-165 (2015) · Zbl 1318.93009 · doi:10.1016/j.automatica.2015.02.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.