Pricing longevity derivatives via Fourier transforms. (English) Zbl 1460.91212

The paper provides a Fourier transform approach for European-style longevity option pricing. The guidelines related to the valuation of longevity derivatives with different payoff structures, by means of a Fourier transform approach, are described; these guidelines, that cover option-type contracts, S-forwards and longevity swaps, provide the basis for the pricing model. Then, the analytical pricing model for longevity derivatives under a risk-adjusted probability pricing measure is developed within a stochastic framework, where both the mortality intensity and interest rates are described by means of a continuous-time affine jump-diffusion stochastic process. Moreover the model calibration is in-depth; numerical examples about the valuation of longevity derivatives complete the study and show the contribution of the results presented in the paper to applied cases. Some technical issues can be obtained by a supplementary file available through the link in Appendix.


91G05 Actuarial mathematics
91G20 Derivative securities (option pricing, hedging, etc.)


Human Mortality
Full Text: DOI


[1] Alonso-García, J.; Wood, O.; Ziveyi, J., Pricing and hedging guaranteed minimum withdrawal benefits under a general Lévy framework using the COS method, Quant. Finance, 18, 1049-1075 (2018) · Zbl 1400.91648
[2] Andersen, L. B.G.; Piterbarg, V. V., Moment explosions in stochastic volatility models, Finance Stoch., 11, 29-50 (2007) · Zbl 1142.65004
[3] Ayuso, M.; Bravo, J. M.; Holzmann, R., Getting life expectancy estimates right for pension policy: Period versus cohort approach, J. Pension Econ. Finance, 1-20 (2020)
[4] Ballotta, L.; Haberman, S., The fair valuation problem of guaranteed annuity options: The stochastic mortality environment case, Insurance Math. Econom., 38, 195-214 (2006) · Zbl 1101.60045
[5] Biffis, E., Affine processes for dynamic mortality and actuarial valuations, Insurance Math. Econom., 37, 443-468 (2005) · Zbl 1129.91024
[6] Biffis, E.; Blake, D.; Pitotti, L.; Sun, A., The cost of counterparty risk and collateralization in longevity swaps, J. Risk Insurance, 83, 387-419 (2016)
[7] Biffis, E.; Denuit, M.; Devolder, P., Stochastic mortality under measure changes, Scand. Actuar. J., 28, 4-311 (2010) · Zbl 1226.91022
[8] Biffis, E.; Lin, Y.; Milidonis, A., The cross-section of Asia-Pacific mortality dynamics: Implications for longevity risk sharing, J. Risk Insurance, 84, 515-532 (2017)
[9] Biffis, E.; Millossovich, P., The fair value of guaranteed annuity options, Scand. Actuar. J., 19, 23-41 (2006) · Zbl 1142.91036
[10] Björk, T., Arbitrage Theory in Continuous Time (1998), Oxford University Press: Oxford University Press New York
[11] Blake, D.; Burrows, W., Survivor bonds: Helping to hedge mortality risk, J. Risk Insurance, 68, 339-348 (2001)
[12] Blake, D.; Cairns, A. J.G.; Dowd, K., Living with mortality: Longevity bonds and other mortality-linked securities, Br. Actuar. J., 12, 153-197 (2006)
[13] Blake, D.; Cairns, K.; MacMin, R., Longevity bonds: Financial engineering valuation and hedging, J. Risk Insurance, 73, 647-672 (2006)
[14] Blake, D.; Cairns, A. J.G.; Kessler, A. R., Still living with mortality: The longevity risk transfer market after one decade, Br. Actuar. J., 24, 1-80 (2019)
[15] Boyer, M.; Stentoft, L., If we can simulate it,we can insure it: an application to longevity risk management, Insurance: Math. Econom., 52, 35-45 (2013) · Zbl 1291.91228
[16] Bravo, J. M., Tábuas de Mortalidade Contemporâneas e Prospectivas: Modelos Estocásticos, Aplicações Actuariais e Cobertura Do Risco de Longevidade (2007), Universidade de Évora, Retrieved from: http://hdl.handle.net/10174/11148
[17] Bravo, J. M., Pricing Longevity Bonds using Affine-Jump Diffusion ModelsWorking Paper 2011/29, CEFAGE-UE (2011)
[18] Bravo, J. M., Funding for longer lives: Retirement wallet and risk-sharing annuities, Ekonomiaz, 96, 268-291 (2019)
[19] Bravo, J. M., Pricing participating longevity-linked life annuities: A Bayesian model ensemble approach, Revis. Resubmit Eur. Actuar. J. (2020)
[20] Bravo, J. M.; Ayuso, M.; Holzmann, R.; Palmer, E., Addressing the life expectancy gap in pension policy, Forthcoming in Insurance: Math. Econom. (2020)
[21] Bravo, J. M.; El Mekkaoui de Freitas, N., Valuation of longevity-linked life annuities, Insurance Math. Econom., 78, 212-229 (2018) · Zbl 1398.91316
[22] Bravo, J. M.; Herce, J. A., Career breaks, broken pensions? Long-run effects of early and late-career unemployment spells on pension entitlements, J. Pension Econom. Finance, 1-27 (2020)
[23] Cairns, A. J.G.; Blake, D.; Dowd, K., Pricing death: Framework for the valuation and securitization of mortality risk, Astin Bull., 36, 79-120 (2006) · Zbl 1162.91403
[24] Cairns, A. J.G.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration, J. Risk Insurance, 73, 687-718 (2006)
[25] Cairns, A. J.G.; Blake, D.; Dowd, K., Modelling and management of mortality risk: A review, Scand. Actuar. J., 79-113 (2008) · Zbl 1224.91048
[26] Cairns, A. J.G.; El Boukfaoui, G., Basis risk in index-based longevity hedges: A guide for longevity hedgers, N. Am. Actuar. J., 1-22 (2019)
[27] Carr, P.; Madan, D., Option valuation using the fast Fourier transform, J. Comput. Finance, 2, 61-73 (1999)
[28] Chan, W. S.; Li, J. S.-H.; Li, J., The CBD mortality indexes: Modeling and applications, N. Am. Actuar. J., 18, 38-58 (2014) · Zbl 1412.91037
[29] Chang, C.; Chen, C.; Tsay, M. H., Pricing survivor swaps with mortality jumps and default risk, Acad. Economic Pap., 38, 119-156 (2010)
[30] Chau, K. W.; Yam, S. C.P.; Yang, H., Fourier-cosine method for Gerber-Shiu functions, Insurance Math. Econom., 61, 170-180 (2015) · Zbl 1314.91235
[31] Cont, R.; Tankov, P., Financial Modelling with Jump Processes (2004), Chapman and Hall/CRC: Chapman and Hall/CRC London · Zbl 1052.91043
[32] Coughlan, G. D.; Epstein, D.; Honig, P., Q-Forwards: Derivatives for Transferring Longevity and Mortality RisksWorking Paper (2007), J. P. Morgan Pension Advisory Group: J. P. Morgan Pension Advisory Group London
[33] Cox, J.; Ingersoll, J.; Ross, S., A theory of the term structure of interest rates, Econometrica, 53, 385-407 (1985) · Zbl 1274.91447
[34] Cox, S. H.; Lin, Y.; Wang, S., Multivariate exponential tilting and pricing implications for mortality securitization, J. Risk Insurance, 73, 719-736 (2006)
[35] Cui, J., Longevity Risk PricingNetspar Discussion Paper,dp 2008-001 (2008)
[36] Dahl, M., Stochastic mortality in life insurance: Market reserves and mortality-linked insurance contracts, Insurance Math. Econom., 35, 113-136 (2004) · Zbl 1075.62095
[37] Dahl, M.; Glar, S.; Møller, T., Mixed dynamic and static risk-minimization with an application to survivor swaps, Eur. Actuar. J., 1, 233-260 (2011)
[38] Dahl, M.; Melchior, M.; Møller, T., On systematic mortality risk and risk-minimization with survivor swaps, Scand. Actuar. J., 11, 4-146 (2008) · Zbl 1224.91054
[39] D’Amato, V.; Di Lorenzo, S.; Haberman, P.; Sagoo, E.; Sibillo, M., De-risking strategy: Longevity spread buy-in, Insurance Math. Econom., 79, 124-136 (2018) · Zbl 1401.91125
[40] Davis, R., Numerical inversion of a characteristic function, Biometrika, 60, 415-417 (1973) · Zbl 0263.65115
[41] Dawson, P.; Dowd, K.; Cairns, A. J.G.; Blake, D., Survivor derivatives: A consistent pricing framework, J. Risk Insurance, 77, 579-596 (2010)
[42] Dawson, P.; Dowd, D.; Cairns, A. J.G., Options on normal underlyings with an application to the pricing of survivor swaptions, J. Futures Markets, 29, 757-774 (2009)
[43] Dowd, K., Survivor bonds: A comment on Blake and Burrows, J. Risk Insurance, 70, 339-348 (2003)
[44] Dowd, K.; Blake, A. J.G.; Cairns, D.; Dawson, P., Survivor swaps, J. Risk Insurance, 73, 1-17 (2006)
[45] Duffie, D.; Pan, J.; Singleton, K., Transform analysis and asset pricing for affine jump-diffusions, Econometrica, 68, 1343-1376 (2000) · Zbl 1055.91524
[46] Friedberg, L.; Webb, A., Life Is Cheap: Using Mortality Bonds To Hedge Aggregate Mortality RiskCRR Working Paper 2005-13 (2005)
[47] Fung, M. C.; Ignatieva, K.; Sherris, M., Managing mortality risk in life annuities: An application of longevity derivatives, Risks, MDPI, Open Access J., 7, 1-25 (2019)
[48] Gander, W.; Gautschi, W., Adaptive quadrature - revisited, BIT, 40, 84-101 (2000) · Zbl 0961.65018
[49] Heath, D.; Jarrow, R.; Morton, A., Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation, Econometrica, 60, 77-105 (1992) · Zbl 0751.90009
[50] Human Mortality Database (2019), University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany), Available at www.mortality.org or www.humanmortality.de (data downloaded on [15-August-2019])
[51] Hunt, A.; Blake, D., Modelling longevity bonds: Analysing the swiss re kortis bond, Insurance Math. Econom., 63, 12-29 (2015) · Zbl 1348.91150
[52] Kahl, C.; Jäckel, P., Not-so-complex logarithms in the Heston model, Wilmott Mag., 19, 94-103 (2005)
[53] Kou, S. G.; Wang, H., Option pricing under a double exponential jump diffusion model, Manage. Sci., 50, 1178-1192 (2004)
[54] Lamberton, D.; Lapeyre, B., Introduction To Stochastic Calculus Applied To Finance (1996), Chapman & Hall/CRC: Chapman & Hall/CRC London · Zbl 0898.60002
[55] Lee, R., Option pricing by transform methods: Extensions, unification, and error control, J. Comput. Finance, 7, 51-86 (2004)
[56] Lee, R.; Carter, L., Modelling and forecasting the time series of US mortality, J. Amer. Statist. Assoc., 87, 659-671 (1992)
[57] Levantesi, S.; Menzietti, M., Maximum market price of longevity risk under solvency regimes: The case of solvency II, Risks, MDPI, Open Access J., 5, 1-21 (2006)
[58] Li, J. S.; Li, J.; Balasooriya, U.; Zhou, K., Constructing out-of-the-money longevity hedges using parametric mortality indexes, N. Am. Actuar. J., 1-32 (2019)
[59] Li, Y.; Liu, J. S., The age pattern of transitory mortality jumps and its impact on the pricing of catastrophic mortality bonds, Insurance Math. Econom., 64, 135-150 (2015) · Zbl 1348.91171
[60] Lin, Y.; Cox, S. H., Securitization of mortality risks in life annuities, J. Risk Insurance, 72, 227-252 (2005)
[61] Lin, Y.; Cox, S. H., Longevity Risk, Rare Event Premia and SecuritizationWorking Paper (2007), University of Nebraska - Lincoln and University of Manitoba
[62] Lin, Y.; Cox, S. H.; Pedersen, H., Mortality risk modeling: Applications to insurance securitization, Insurance Math. Econom., 46, 242-253 (2010) · Zbl 1231.91168
[63] Technical note: The s-forward. London: Life and longevity markets association (LLMA) (2010)
[64] Lord, R.; Kahl, C., Optimal Fourier inversion in semi-analytical option pricing, J. Comput. Finance, 10, 1-30 (2007)
[65] Luciano, E.; Regis, L.; Vigna, E., Delta-gamma hedging of mortality and interest rate risk, Insurance Math. Econom., 50, 402-412 (2012) · Zbl 1237.91134
[66] Luciano, E.; Vigna, E., Mortality risk via affine stochastic intensities: Calibration and empirical relevance, Belg. Actuar. J., 8, 5-16 (2008) · Zbl 1398.91345
[67] Michaelson, A.; Mulholland, J., Strategy for increasing the global capacity for longevity risk transfer: Developing transactions that attract capital markets investors, J. Altern. Invest., 17, 18-27 (2014)
[68] Michaelson, A.; Mulholland, J., Strategy for increasing the global capacity for longevity risk transfer, (Bruce, B. R., Pension and Longevity Risk Transfer for Institutional Investors (Institutional Investor Journals) (2015)), 28-37
[69] Milevsky, M.; Promislow, S., Mortality derivatives and the option to annuitise, Insurance Math. Econom., 29, 299-318 (2001) · Zbl 1074.62530
[70] Milevsky, M.; Promislow, S. D.; Young, V. R., Financial Valuation of Mortality Risk Via the Instantaneous Sharpe Ratio: Applications to Pricing Pure EndowmentsWorking Paper (2005), University of Michigan: University of Michigan Ann Arbor, Available at: http://arxiv.org/abs/0705.1302
[71] Miltersen, C.; Persson, S. A., Is Mortality Dead? Stochastic Forward Force of Mortality Rate Determined By No ArbitrageWorking Paper (2006), Norwegian School of Economics and Business Administration
[72] Nunes, J., Multifactor valuation of floating range notes, Math. Finance, 14, 79-97 (2004) · Zbl 1097.91047
[73] Nunes, J.; Alcaria, T., Valuation of forward start options under affine jump-diffusion models, Quant. Finance, 16, 727-747 (2016)
[74] Press, W.; Flannery, B.; Teukolsky, S.; Vetterling, W., Numerical Recipes in Pascal (1994), The Art of Scientific Computing (Cambridge University Press: The Art of Scientific Computing (Cambridge University Press Cambridge)
[75] Sánchez-Romero, M.; Lee, R.; Prskawetz, A., Redistributive effects of different pension systems when longevity varies by socioeconomic status, J. Economics Ageing, 17 (2020)
[76] Schräger, D., Affine stochastic mortality, Insurance Math. Econom., 35, 81-97 (2006) · Zbl 1103.60063
[77] Vasiček, O., An equilibrium characterization of the term structure, J. Financ. Econ., 5, 177-188 (1977) · Zbl 1372.91113
[78] Wang, S., A universal framework for pricing financial and insurance risks, Astin Bull., 32, 213-234 (2002) · Zbl 1090.91555
[79] Wang, C.; Yang, S., Pricing survivor derivatives with cohort mortality dependence under the Lee-Carter framework, J. Risk Insurance, 80, 1027-1056 (2013)
[80] Yueh, M.-L.; Chiu, H.-Y.; Tsai, S.-H., Valuations of mortality-linked structured products, J. Derivatives, 24, 66-87 (2016)
[81] Zeddouk, F.; Devolder, P., Pricing of longevity derivatives and cost of capital, Risks, MDPI, Open Access J., 7, 1-29 (2019)
[82] Zhu, N.; Bauer, D., Applications of forward mortality factor models in life insurance practice, Geneva Pap. Risk Insurance - Issues Pract., 36, 567-594 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.