zbMATH — the first resource for mathematics

Transient energy growth in the ageostrophic eady model. (English) Zbl 1460.76906
J. Fluid Mech. 885, Paper No. A29, 35 p. (2020); erratum ibid. 888, Paper No. E2, 1 p. (2020).
Summary: The problem of optimal initial disturbances in thermal wind shear is revisited and extended to include non-hydrostatic effects. This systematic study compares transient and modal growth rates of submesoscale instabilities over a large range of zonal and meridional wavenumbers, aspect ratios and different Richardson number regimes. Selection criteria were derived to remove spurious and unresolved instability modes that arise from the eigenvalue problem and we generalize the study of the hydrostatic Eady problem by E. Heifetz and B. Farrell [“Generalized stability of nongeostrophic baroclinic shear flow. Part I: large Richardson number regime”, J. Atmos. Sci. 60, No. 17, 2083–2100 (2003; doi:10.1175/1520-0469(2003)060<2083:GSONBS>2.0.CO;2); “Generalized stability of nongeostrophic baroclinic shear flow. Part II: intermediate Richardson number regime”, J. Atmos. Sci. 64, No. 12, 4366–4382 (2007; doi:10.1175/2007JAS2225.1); “Non-normal growth in symmetric shear flow”, Q. J. R. Meteorol. Soc. 134, No. 635, 1627–1633 (2008; doi:10.1002/qj.3050)] to thin fronts, characterized by large aspect ratios. Such fronts are commonly found at the early stages of frontogenesis, for example, in the ocean mesoscale eddies and near the eye wall of hurricanes. In particular, we show that transient energy growth rates are up to two orders of magnitude larger than modal counterparts for a wide range of Richardson number and that the effects of transient energy gain become even greater when non-hydrostatic effects become important and/or for large Richardson numbers. This study also compares the dominant energy pathways contributing to the energy growth at short and long times. For symmetric modes, we recover the inertia-gravity instability described in [Q. Xu et al., “Modal and nonmodal symmetric perturbations. Part II: nonmodal growths measured by total perturbation energy”, J. Atmos. Sci. 64, No. 6, 1764–1781 (2007; doi:10.1175/JAS3973.1)]. These mechanisms are shown to be the most powerful mediator of vertical transport when compared with the fastest growing baroclinic and symmetric modes. These results highlight the importance of transient processes in the ocean and the atmosphere.

76U05 General theory of rotating fluids
86A05 Hydrology, hydrography, oceanography
rotating flows
Full Text: DOI
[1] von Appen, W.-J., Wekerle, C., Hehemann, L., Schourup-Kristensen, V., Konrad, C. & Iversen, M. H.2018Observations of a submesoscale cyclonic filament in the marginal ice zone. Geophys. Res. Lett.45 (12), 6141-6149.
[2] Arobone, E. & Sarkar, S.2015Effects of three-dimensionality on instability and turbulence in a frontal zone. J. Fluid Mech.784, 252-273. · Zbl 1382.76133
[3] Bakas, N. A. & Farrell, B. F.2009aGravity waves in a horizontal shear flow. Part I: growth mechanisms in the absence of potential vorticity perturbations. J. Phys. Oceanogr.39 (3), 481-496.
[4] Bakas, N. A. & Farrell, B. F.2009bGravity waves in a horizontal shear flow. Part II: interaction between gravity waves and potential vorticity perturbations. J. Phys. Oceanogr.39 (3), 497-511.
[5] Boccaletti, G., Ferrari, R. & Fox-Kemper, B.2007Mixed layer instabilities and restratification. J. Phys. Oceanogr.37 (9), 2228-2250.
[6] Brandt, L.2014The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids)47, 80-96. · Zbl 1297.76073
[7] Brannigan, L., Marshall, D.P., Naveira Garabato, A.C., Nurser, A.J.G. & Kaiser, J.2017Submesoscale instabilities in mesoscale eddies. J. Phys. Ocean.47 (12), 3061-3085.
[8] Callies, J., Ferrari, R., Klymak, J. M. & Gula, J.2015Seasonality in submesoscale turbulence. Nat. Comm.6, 6862.
[9] Chandrasekhar, S.1961Hydromagnetic and Hydrodynamic Stability. Clarendon.
[10] Drobinski, P. & Foster, R. C.2003On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer. Boundary-Layer Meteorol.108 (2), 247-256.
[11] Eady, E. T.1949Long waves and cyclone waves. Tellus1 (3), 33-52.
[12] Ellingsen, T. & Palm, E.1975Stability of linear flow. Phys. Fluids18 (4), 487-488. · Zbl 0308.76030
[13] Ellis, R. & Businger, S.2010Helical circulations in the typhoon boundary layer. J. Geophys. Res.115 (D6), D06205.
[14] Farrell, B. F.1988Optimal excitation of perturbations in viscous shear flow. Phys. Fluids31 (8), 2093-2102.
[15] Farrell, B. F. & Ioannou, P. J.1993aOptimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids A5 (6), 1390-1400. · Zbl 0779.76030
[16] Farrell, B. F. & Ioannou, P. J.1993bStochastic dynamics of baroclinic waves. J. Atmos. Sci.50 (24), 4044-4057.
[17] Farrell, B. F. & Ioannou, P. J.1993cStochastic forcing of perturbation variance in unbounded shear and deformation flows. J. Atmos. Sci.50 (2), 200-211.
[18] Foster, R.2013Signature of large aspect ratio roll vortices in synthetic aperture radar images of tropical cyclones. Oceanography26 (2), 58-67.
[19] Gardner, D. R., Trogdon, S. A. & Douglass, R. W.1989A modified tau spectral method that eliminates spurious eigenvalues. J. Comput. Phys.80 (1), 137-167. · Zbl 0661.65084
[20] Gary, J. & Helgason, R.1970A matrix method for ordinary differential eigenvalue problems. J. Comput. Phys.5 (2), 169-187. · Zbl 0191.16603
[21] Gnanadesikan, A., Slater, R. D., Swathi, P. & Vallis, G. K.2005The energetics of ocean heat transport. J. Clim.18 (14), 2604-2616.
[22] Grisouard, N.2018Extraction of potential energy from geostrophic fronts by inertial-symmetric instabilities. J. Phys. Oceanogr.48 (5), 1033-1051.
[23] Grisouard, N. & Thomas, L. N.2015Critical and near-critical reflections of near-inertial waves off the sea surface at ocean fronts. J. Fluid Mech.765, 273-302.
[24] Grisouard, N. & Thomas, L. N.2016Energy exchanges between density fronts and near-inertial waves reflecting off the ocean surface. J. Phys. Oceanogr.46 (2), 501-516.
[25] Heifetz, E. & Farrell, B.2003Generalized stability of nongeostrophic baroclinic shear flow. Part I: large Richardson number regime. J. Atmos. Sci.60, 2083-2100.
[26] Heifetz, E. & Farrell, B. F.2007Generalized stability of nongeostrophic baroclinic shear flow. Part II: intermediate Richardson number regime. J. Atmos. Sci.64 (12), 4366-4382.
[27] Heifetz, E. & Farrell, B. F.2008Non-normal growth in symmetric shear flow. Q. J. R. Meteorol. Soc.134 (635), 1627-1633.
[28] Lorenz, E. N.1955Available potential energy and the maintenance of the general circulation. Tellus7 (2), 157-167.
[29] Manning, M. L., Bamieh, B. & Carlson, J.2007 Descriptor approach for eliminating spurious eigenvalues in hydrodynamic equations. .
[30] Molemaker, M. J., McWilliams, J. C. & Yavneh, I.2005Baroclinic instability and loss of balance. J. Phys. Oceanogr.35 (9), 1505-1517.
[31] Morrison, I., Businger, S., Marks, F., Dodge, P. & Businger, J. A.2005An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci.62 (8), 2662-2673.
[32] Nakamura, N.1988Scale selection of baroclinic instability – effects of stratification and nongeostrophy. J. Atmos. Sci.45 (21), 3253-3268.
[33] Nolan, D. S., Dahl, N. A., Bryan, G. H. & Rotunno, R.2017Tornado vortex structure, intensity, and surface wind gusts in large-eddy simulations with fully developed turbulence. J. Atmos. Sci.74 (5), 1573-1597.
[34] Omand, M. M., DAsaro, E. A., Lee, C. M., Perry, M. J., Briggs, N., Cetinić, I. & Mahadevan, A.2015Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science348 (6231), 222-225.
[35] Orr, W. M. F.1907The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I. A perfect liquid. Proc. R. Irish Acad. Sec. A27, 9-68.
[36] Orszag, S. A.1971Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech.50 (4), 689-703. · Zbl 0237.76027
[37] Park, J., Billant, P. & Baik, J.-J.2017Instabilities and transient growth of the stratified Taylor-Couette flow in a Rayleigh-unstable regime. J. Fluid Mech.822, 80-108. · Zbl 1383.76133
[38] Passaggia, P.-Y. & Ehrenstein, U.2013Adjoint based optimization and control of a separated boundary-layer flow. Eur. J. Mech. (B/Fluids)41, 169-177. · Zbl 1408.76244
[39] Passaggia, P.-Y., Meunier, P. & Le Dizès, S.2014Response of a stratified boundary layer on a tilted wall to surface undulations. J. Fluid Mech.751, 663-684.
[40] Passaggia, P.-Y., Scotti, A. & White, B.2017Transition and turbulence in horizontal convection: linear stability analysis. J. Fluid Mech.821, 31-58. · Zbl 1383.76134
[41] Ramachandran, S., Tandon, A., Mackinnon, J., Lucas, A. J., Pinkel, R., Waterhouse, A. F., Nash, J., Shroyer, E., Mahadevan, A., Weller, R. A.et al.2018Submesoscale processes at shallow salinity fronts in the Bay of Bengal: observations during the winter monsoon. J. Phys. Oceanogr.48 (3), 479-509.
[42] Sarkar, S., Pham, H. T., Ramachandran, S., Nash, J. D., Tandon, A., Buckley, J., Lotliker, A. A. & Omand, M. M.2016The interplay between submesoscale instabilities and turbulence in the surface layer of the bay of bengal. Oceanography29 (2), 146-157.
[43] Schmid, P. J. & Brandt, L.2014Analysis of fluid systems: stability, receptivity, sensitivity: lecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl. Mech. Rev.66 (2), 024803.
[44] Schmid, P. J. & Henningson, D. S.2012Stability and Transition in Shear Flows, vol. 142. Springer Science & Business Media. · Zbl 0966.76003
[45] Scotti, A. & Passaggia, P.-Y.2019Diagnosing diabatic effects on the available energy of stratified flows in inertial and non-inertial frames. J. Fluid Mech.861, 608-642. · Zbl 1415.86020
[46] Solberg, H.1936Le mouvement dinertie de latmosphere stable et son role dans la theorie des cyclones. In Proces-Verbaux des séances de lUnion International de Géodésie et Géophysique (IUGG), pp. 66-82. IUGG.
[47] Stamper, M. A. & Taylor, J. R.2017The transition from symmetric to baroclinic instability in the Eady model. Ocean Dyn.67 (1), 65-80.
[48] Stone, P.1966On non-geostrophic baroclinic stability. J. Atmos. Sci.23, 390-400.
[49] Stone, P.1970On non-geostrophic baroclinic stability: part II. J. Atmos. Sci.27, 721-726.
[50] Stone, P.1971Baroclinic stability under non-hydrostatic conditions. J. Fluid Mech.45, 659-671. · Zbl 0271.76045
[51] Taylor, J. R. & Ferrari, R.2009On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech.622, 103-113. · Zbl 1165.76336
[52] Taylor, J. R. & Ferrari, R.2010Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr.40 (6), 1222-1242.
[53] Taylor, J. R. & Ferrari, R.2011Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms. Limnol. Oceanogr.56 (6), 2293-2307.
[54] Thomas, L. N., Taylor, J. R., Ferrari, R. & Joyce, T. M.2013Symmetric instability in the gulf stream. Deep-Sea Res.91, 96-110.
[55] Vallis, G. K.2017Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press. · Zbl 1374.86002
[56] Vasavada, A. R. & Showman, A. P.2005Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys.68 (8), 1935.
[57] Walters, R. A. & Carey, G. F.1983Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations. Comput. Fluids11 (1), 51-68. · Zbl 0521.76017
[58] Wolfe, C., Cessi, P., McClean, J. & Maltrud, M.2008Vertical heat transport in eddying ocean models. Geophys. Res. Lett.35 (23), L23605.
[59] Worsnop, R. P., Lundquist, J. K., Bryan, G. H., Damiani, R. & Musial, W.2017Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards. Geophys. Res. Lett.44 (12), 6413-6420.
[60] Xu, Q.2007Modal and nonmodal symmetric perturbations. Part I: completeness of normal modes and constructions of nonmodal solutions. J. Atmos. Sci.64 (6), 1745-1763.
[61] Xu, Q., Lei, T. & Gao, S.2007Modal and nonmodal symmetric perturbations. Part II: nonmodal growths measured by total perturbation energy. J. Atmos. Sci.64 (6), 1764-1781.
[62] Young, W.1994The subinertial mixed layer approximation. J. Phys. Oceanogr.24 (8), 1812-1826.
[63] Zemskova, V. E., White, B. L. & Scotti, A.2015Available potential energy and the general circulation: partitioning wind, buoyancy forcing, and diapycnal mixing. J. Phys. Oceanogr.45 (6), 1510-1531.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.