×

Influence of interface pollution on the linear stability of a rotating flow. (English) Zbl 1460.76888

Summary: The boundary conditions at a liquid-gas interface can be modified by the presence of pollutants. This can in turn affect the stability of the associated flow. We consider this issue in the case of a simple open cylindrical cavity flow where a liquid is set in motion by the rotation of the bottom. The problem is addressed using an experimental set-up, a linear stability code and direct numerical simulation. A robust mismatch between numerical and experimental predictions of the onset of instability is found. We model the possible effect of unidentified pollutants at the interface using an advection-diffusion equation and a closure equation linking the surface tension to the superficial pollutant concentration. The chosen closure is inspired by studies of free-surface flows with surfactants. Numerical stability analysis reveals that the base flow and its linear stability threshold are strongly affected by the addition of pollutants. Pollutants tend to decrease the critical Reynolds number; however, the nonlinear dynamics is less rich than without pollutants. For sufficiently high pollution levels, the most unstable mode belongs to a different family, in agreement with experimental findings.

MSC:

76U05 General theory of rotating fluids
76T10 Liquid-gas two-phase flows, bubbly flows

Keywords:

rotating flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bandi, M. M., Akella, V. S., Singh, D. K., Singh, R. S. & Mandre, S.2017Hydrodynamic signatures of stationary Marangoni-driven surfactant transport. Phys. Rev. Lett.119 (26), 264501.
[2] Cheng, N. S.2008Formula for the viscosity of a glycerol-water mixture. Ind. Engng Chem. Res.47 (9), 3285-3288.
[3] Cogan, S. J., Ryan, K. & Sheard, G. J.2011Symmetry breaking and instability mechanisms in medium depth torsionally open cylinder flows. J. Fluid Mech.672, 521-544. · Zbl 1225.76110
[4] Daube, O.1991Numerical simulation of axisymmetric vortex breakdown in a closed cylinder. In Vortex Dynamics and Vortex Methods (ed. Anderson, C. R. & Greengard, C.), Lectures in Applied Mathematics, vol. 28, pp. 131-152. American Mathematical Society. · Zbl 0825.76565
[5] Duguet, Y., Scott, J. F. & Le Penven, L.2005Instability inside a rotating gas cylinder subject to axial periodic strain. Phys. Fluids17 (11), 114103. · Zbl 1188.76042
[6] Hirsa, A. H., Lopez, J. M. & Miraghaie, R.2001Measurement and computation of hydrodynamic coupling at an air/water interface with an insoluble monolayer. J. Fluid Mech.443, 271-292. · Zbl 0978.76527
[7] Hirsa, A. H., Lopez, J. M. & Miraghaie, R.2002aDetermination of surface shear viscosity via deep-channel flow with inertia. J. Fluid Mech.470, 135-149. · Zbl 1026.76500
[8] Hirsa, A. H., Lopez, J. M. & Miraghaie, R.2002bSymmetry breaking to a rotating wave in a lid-driven cylinder with a free surface: experimental observation. Phys. Fluids14 (6), 29-32. · Zbl 1185.76169
[9] Huisman, S. G., Van Gils, D. P. M. & Sun, C.2012Applying laser Doppler anemometry inside a Taylor-Couette geometry using a ray-tracer to correct for curvature effects. Eur. J. Mech. B/Fluids36, 115-119. · Zbl 1291.76013
[10] Hyun, J. M.1985Flow in an open tank with a free surface driven by the spinning bottom. J. Fluids Engng107 (4), 495-499.
[11] Iga, K., Yokota, S., Watanabe, S., Ikeda, T., Niino, H. & Misawa, N.2014Various phenomena on a water vortex in a cylindrical tank over a rotating bottom. Fluid Dyn. Res.46 (3), 031409. · Zbl 1307.76017
[12] Iwatsu, R.2004Analysis of flows in a cylindrical container with rotating bottom and top underformable free surface. JSME Intl J.47 (3), 549-556.
[13] Jansson, T. R. N., Haspang, M. P., Jensen, K. H., Hersen, P. & Bohr, T.2006Polygons on a rotating fluid surface. Phys. Rev. Lett.96 (17), 174502.
[14] Kahouadji, L., Houchens, B. C. & Martin Witkowski, L.2011Thermocapillary instabilities in a laterally heated liquid bridge with end wall rotation. Phys. Fluids23 (10), 104104.
[15] Kahouadji, L., Martin Witkowski, L. & Le Quéré, P.2010Seuils de stabilité pour un écoulement à surface libre engendré dans une cavité cylindrique tournante à petit rapport de forme. Mécanique et Industries11 (5), 339-344.
[16] Kwan, Y. Y., Park, J. & Shen, J.2010A mathematical and numerical study of incompressible flows with a surfactant monolayer. Discrete Continuous Dyn. Syst.28 (1), 181-197. · Zbl 1387.76076
[17] Lopez, J. M. & Chen, J.1998Coupling between a viscoelastic gas/liquid interface and swirling vortex flow. J. Fluids Engng120 (4), 655-661.
[18] Lopez, J. M. & Hirsa, A.2000Surfactant-influenced gas-liquid interfaces: nonlinear equation of state and finite surface viscosities. J. Colloid Interface Sci.229 (2), 575-583.
[19] Lopez, J. M., Marques, F., Hirsa, A. H. & Miraghaie, R.2004Symmetry breaking in free-surface cylinder flows. J. Fluid Mech.502, 99-126. · Zbl 1146.76021
[20] Magnaudet, J. & Eames, I.2000The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech.32 (1), 659-708. · Zbl 0989.76082
[21] Martín, E. & Vega, J. M.2006The effect of surface contamination on the drift instability of standing Faraday waves. J. Fluid Mech.546, 203-225. · Zbl 1097.76027
[22] Peaudecerf, F. J., Landel, J. R., Goldstein, R. E. & Luzzatto-Fegiz, P.2017Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces. Proc. Natl Acad. Sci.114 (28), 7254-7259.
[23] Ponce-Torres, A. & Vega, E. J.2016The effects of ambient impurities on the surface tension. EPJ Web Conf.114, 02098.
[24] Poncet, S. & Chauve, M. P.2007Shear-layer instability in a rotating system. J. Flow Visual. Image Process.14 (1), 85-105.
[25] Rastello, M., Marié, J. L. & Lance, M.2017Clean versus contaminated bubbles in a solid-body rotating flow. J. Fluid Mech.831, 592-617. · Zbl 1421.76235
[26] Scriven, L. E.1960Dynamics of a fluid interface: equation of motion for Newtonian surface fluids. Chem. Engng Sci.12 (2), 98-108.
[27] Serre, E. & Bontoux, P.2007Vortex breakdown in a cylinder with a rotating bottom and a flat stress-free surface. Intl J. Heat Fluid Flow28 (2), 229-248.
[28] Serre, E., Tuliszka-Sznitko, E. & Bontoux, P.2004Coupled numerical and theoretical study of the flow transition between a rotating and a stationary disk. Phys. Fluids16 (3), 688-706. · Zbl 1186.76468
[29] Spohn, A. & Daube, O.1991Recirculating flows in a cylindrical tank. In Proceedings of the 5th International Conference on Computational Methods and Experimental Measurement (ed. Sousa, A., Brebbia, C. A. & Carlomagno, G. M.), pp. 155-166. Elsevier.
[30] Stewartson, K.1957On almost rigid rotations. J. Fluid Mech.3, 17-26. · Zbl 0080.39103
[31] Stone, H.1990A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming surface. Phys. Fluids2 (1), 111-112.
[32] Suzuki, T., Iima, M. & Hayase, Y.2006Surface switching of rotating fluid in a cylinder. Phys. Fluids18 (10), 101701.
[33] Tasaka, Y. & Iima, M.2009Flow transitions in the surface switching of rotating fluid. J. Fluid Mech.636, 475-484. · Zbl 1183.76051
[34] Tophøj, L., Mougel, J., Bohr, T. & Fabre, D.2013Rotating polygon instability of a swirling free surface flow. Phys. Rev. Lett.110 (19), 194502.
[35] Vatistas, G. H., Abderrahmane, H. A. & Siddiqui, M. H. K.2008Experimental confirmation of Kelvin’s equilibria. Phys. Rev. Lett.100 (17), 174503.
[36] Vatistas, G. H., Wang, J. & Lin, S.1992Experiments on waves induced in the hollow core of vortices. Exp. Fluids13 (6), 377-385.
[37] Yang, W., Delbende, I., Fraigneau, Y. & Martin Witkowski, L.2019Axisymmetric rotating flow with free surface in a cylindrical tank. J. Fluid Mech.861, 796-814. · Zbl 1415.76742
[38] Yang, W., Delbende, I., Fraigneau, Y. & Martin Witkowski, L.2020Large axisymmetric surface deformation and dewetting in the flow above a rotating disk in a cylindrical tank: spin-up and permanent regimes. Phys. Rev. Fluids5 (4), 044801.
[39] Young, D. L., Sheen, H. J. & Hwu, T. Y.1995Period-doubling route to chaos for a swirling flow in an open cylindrical container with a rotating disk. Exp. Fluids18 (5), 389-396.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.