×

Suppression of internal waves by thermohaline staircases. (English) Zbl 1460.76738

Summary: This study attempts to quantify and explain the systematic weakening of internal gravity waves in fingering and diffusive thermohaline staircases. The interaction between waves and staircases is explored using a combination of direct numerical simulations (DNS) and an asymptotic multiscale model. The multiscale theory makes it possible to express the wave decay rate \((\lambda_d)\) as a function of its wavenumbers and staircase parameters. We find that the decay rates in fully developed staircases greatly exceed values that can be directly attributed to molecular dissipation. They rapidly increase with increasing wavenumbers, both vertical and horizontal. At the same time, \(\lambda_d\) is only weakly dependent on the thickness of layers in the staircase, the overall density ratio and the diffusivity ratio. The proposed physical mechanism of attenuation emphasizes the significance of eddy diffusion of temperature and salinity, whereas eddy viscosity plays a secondary role in damping internal waves. The asymptotic model is successfully validated by the DNS performed in numerically accessible regimes. We also discuss potential implications of staircase-induced suppression for diapycnal mixing by overturning internal waves in the ocean.

MSC:

76R50 Diffusion
76E20 Stability and instability of geophysical and astrophysical flows
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Balmforth, N. J. & Young, Y.-N.2002Stratified Kolmogorov flow. J. Fluid Mech.450, 131-167. · Zbl 1041.76023
[2] Balmforth, N. J. & Young, Y.-N.2005Stratified Kolmogorov flow. Part 2. J. Fluid Mech.528, 23-42. · Zbl 1163.76358
[3] Bebieva, Y. & Speer, K.2019The regulation of sea ice thickness by double-diffusive processes in the Ross Gyre. J. Geophys. Res.: Oceans124, 7068-7081.
[4] Carpenter, J. R., Sommer, T. & Wuest, A.2012Simulations of a double-diffusive interface in the diffusive convection regime. J. Fluid Mech.711, 411-436. · Zbl 1275.76193
[5] Cole, S. T., Toole, J. M., Rainville, L. & Lee, C. M.2018Internal waves in the Arctic: influence of ice concentration, ice roughness, and surface layer stratification. J. Geophys. Res.: Oceans123, 5571-5586.
[6] Fernando, H. J. S.1989Buoyancy transfer across a diffusive interface. J. Fluid Mech.209, 1-34.
[7] Flanagan, J., Lefler, A. & Radko, T.2013Heat transport through diffusive interfaces. Geophys. Res. Lett.40, 2466-2470.
[8] Gama, S., Vergassola, M. & Frisch, U.1994Negative eddy viscosity in isotropically forced 2-dimensional flow – linear and nonlinear dynamics. J. Fluid Mech.260, 95-126.
[9] Garaud, P.2018Double-diffusive convection at low Prandtl number. Annu. Rev. Fluid Mech.50, 275-298. · Zbl 1384.76017
[10] Garrett, C. & Munk, W.1972Space-time scales of ocean internal waves. Geophys. Fluid Dyn.3, 225-264.
[11] Ghaemsaidi, S., Dosser, H. V., Rainville, L. & Peacock, T.2016The impact of multiple layering on internal wave transmission. J. Fluid Mech.789, 617-629.
[12] Guthrie, J. D., Fer, I. & Morison, J.2015Observational validation of the diffusive convection flux laws in the Amundsen Basin, Arctic Ocean. J. Geophys. Res.: Oceans120, 7880-7896.
[13] Guthrie, J. D., Morison, J. H. & Fer, I.2013Revisiting internal waves and mixing in the Arctic Ocean. J. Geophys. Res.: Oceans118, 3966-3977.
[14] Von Helmholtz, H.1868Uber discontinuierliche Flussigkeits-Bewegungen [On the discontinuous movements of fluids]. Monatsber. Konigl. Preuss. Akad. Wiss. Berlin23, 215-228.
[15] Holyer, J. Y.1981On the collective instability of salt fingers. J. Fluid Mech.110, 195-207. · Zbl 0484.76057
[16] Holyer, J. Y.1985The stability of long steady three-dimensional salt fingers to long wavelength perturbations. J. Fluid Mech.156, 495-503. · Zbl 0586.76090
[17] Howard, L. N.1961Note on a paper of John W. Miles. J. Fluid Mech.10, 509-512.
[18] Kelley, D. E.1990Fluxes through diffusive staircases: a new formulation. J. Geophys. Res.95, 3365-3371.
[19] Kelley, D. E., Fernando, H. J. S., Gargett, A. E., Tanny, J. & Ozsoy, E.2003The diffusive regime of double-diffusive convection. Prog. Oceanogr.56, 461-481.
[20] Kelvin, Lord1871Influence of wind and capillarity on waves in water supposed frictionless. Math. Phys. Papers4, 76-85.
[21] Krishnamurti, R.2009Heat, salt and momentum transport in a laboratory thermohaline staircase. J. Fluid Mech.638, 491-506. · Zbl 1183.76029
[22] Levine, M. D., Paulson, C. A. & Morison, J. H.1985Internal waves in the Arctic Ocean: comparison with lower-latitude observations. J. Phys. Oceanogr.15, 800-809.
[23] Levine, M. D., Paulson, C. A. & Morison, J. H.1987Observations of internal gravity waves under the Arctic pack ice. J. Geophys. Res.92 (C), 779-782.
[24] Linden, P. F. & Shirtcliffe, T. G. L.1978The diffusive interface in double-diffusive convection. J. Fluid Mech.87, 417-432.
[25] Manfroi, A. & Young, W.1999Slow evolution of zonal jets on the beta plane. J. Atmos. Sci.56, 784-800.
[26] Manfroi, A. & Young, W.2002Stability of beta-plane Kolmogorov flow. Physica D162, 208-232. · Zbl 0983.86002
[27] Mei, C. C. & Vernescu, M.2010Homogenization Methods for Multiscale Mechanics. World Scientific. · Zbl 1210.74005
[28] Meshalkin, L. & Sinai, Y.1961Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid. J. Appl. Math. Mech.25, 1700-1705. · Zbl 0108.39501
[29] Miles, J. W.1961On the stability of heterogeneous shear flows. J. Fluid Mech.10, 496-508. · Zbl 0101.43002
[30] Monin, A. S. & Ozmidov, R. V.1985Turbulence in the Ocean. D. Reidel.
[31] Novikov, A. & Papanicolau, G.2001Eddy viscosity of cellular flows. J. Fluid Mech.446, 173-198. · Zbl 0997.76030
[32] Pinkel, R.2005Near-inertial wave propagation in the western Arctic. J. Phys. Oceanogr.35, 645-665.
[33] Polyakov, I. V., et al.2017Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science356, 285-291.
[34] Polzin, K.1996Statistics of the Richardson number: mixing models and fine structure. J. Phys. Oceanogr.26, 1409-1425.
[35] Polzin, K. L., Kunze, E., Toole, J. M. & Schmitt, R. W.2003The partition of fine-scale energy into internal waves and geostrophic motions. J. Phys. Oceanogr.33, 234-248.
[36] Radko, T.2008The double-diffusive modon. J. Fluid Mech.609, 59-85. · Zbl 1147.76058
[37] Radko, T.2011Eddy viscosity and diffusivity in the modon-sea model. J. Mar. Res.69, 723-752.
[38] Radko, T.2013Double-Diffusive Convection. Cambridge University Press.
[39] Radko, T.2014Applicability and failure of the flux-gradient laws in double-diffusive convection. J. Fluid Mech.750, 33-72.
[40] Radko, T.2019aThermohaline-shear instability. Geophys. Res. Lett.46, 822-832.
[41] Radko, T.2019bThermohaline layering on the microscale. J. Fluid Mech.862, 672-695. · Zbl 1415.76590
[42] Radko, T., Ball, J., Colosi, J. & Flanagan, J.2015Double-diffusive convection in a stochastic shear. J. Phys. Oceanogr.45, 3155-3167.
[43] Richardson, L. F.1920The supply of energy from and to atmospheric eddies. Proc. R. Soc. A97, 354-373.
[44] Ruddick, B. R.1980 Stress at a sheared finger interface. In Hydraulics and Fluid Mechanics Conference. Institution of Engineers.
[45] Ruddick, B. R.1985Momentum transport in thermohaline staircases. J. Geophys. Res.90, 895-902.
[46] Schmitt, R. W.1994Double diffusion in oceanography. Annu. Rev. Fluid Mech.26, 255-285.
[47] Schmitt, R. W., Ledwell, J. R., Montgomery, E. T., Polzin, K. L. & Toole, J. M.2005Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science308, 685-688.
[48] Smyth, W., Moum, J. & Caldwell, D.2001The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr.31, 1969-1992.
[49] Stellmach, S., Traxler, A., Garaud, P., Brummell, N. & Radko, T.2011Dynamics of fingering convection II: the formation of thermohaline staircases. J. Fluid Mech.677, 554-571. · Zbl 1241.76228
[50] Stern, M. E.1960The “salt-fountain” and thermohaline convection. Tellus12, 172-175.
[51] Stern, M. E.1969Collective instability of salt fingers. J. Fluid Mech.35, 209-218. · Zbl 0164.28802
[52] Stern, M. E., Radko, T. & Simeonov, J.20013D salt fingers in an unbounded thermocline with application to the Central Ocean. J. Mar. Res.59, 355-390.
[53] Sutherland, B. R.2016Internal wave transmission through a thermohaline staircase. Phys. Rev. Fluids1, 013701.
[54] Thorpe, S. A.1971Experiments on instability and turbulence of stratified shear flows: miscible fluids. J. Fluid Mech.46, 299-319.
[55] Thorpe, S. A.2005The Turbulent Ocean. Cambridge University Press.
[56] Timmermans, M.-L., Toole, J., Krishfield, R. & Winsor, P.2008Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermohaline. J. Geophys. Res.113, C00A02.
[57] Traxler, A., Stellmach, S., Garaud, P., Radko, T. & Brummel, N.2011Dynamics of fingering convection I: small-scale fluxes and large-scale instabilities. J. Fluid Mech.677, 530-553. · Zbl 1241.76229
[58] Turner, J. S.1985Multicomponent convection. Annu. Rev. Fluid Mech.17, 11-44.
[59] Turner, J. S.2010The melting of ice in the Arctic Ocean: the influence of double-diffusive transport of heat from below. J. Phys. Oceanogr.40, 249-256.
[60] Veronis, G.2007Updated estimate of double diffusive fluxes in the C-SALT region. Deep-Sea Res. I54, 831-833.
[61] Woods, J. D.1968Wave-induced shear instability in the summer thermocline. J. Fluid Mech.32, 791-800.
[62] Worster, M. G.2004Time-dependent fluxes across double-diffusive interfaces. J. Fluid Mech.505, 287-307. · Zbl 1065.76185
[63] Wunsch, S.2018Nonlinear harmonic generation by internal waves in a density staircase. Phys. Rev. Fluids3, 114803.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.