×

zbMATH — the first resource for mathematics

Uniform-momentum zones in a turbulent pipe flow. (English) Zbl 1460.76456
Summary: The characteristics and dynamics of the uniform-momentum zones (UMZ) and UMZ interfaces in a fully developed turbulent pipe flow are studied using direct numerical simulation at \(Re_ \tau =500\). The multiple UMZs detected from the probability density functions of the instantaneous streamwise velocity following [C. M. De Silva et al., ibid. 786, 309–331 (2016; Zbl 1381.76106)] showed similarities to both turbulent channel and boundary layer flows (TBL): the hierarchical structural distribution of thinner UMZs with thinner interfaces nearer the wall, accompanied with sharper and larger jumps in the streamwise velocity at the UMZ interface. The conditional average results indicate that channel and pipe are very similar quantitatively whereas pipe and TBL display significant discrepancies. The innermost UMZs in pipe flow exhibit different behaviours to the other UMZs in pipes. The contortion of the UMZ interface representing the meandering of coherent motions with high- and low-momentum streaks is examined three-dimensionally. The meandering of UMZ in both two and three dimensions intensifies away from the wall and is always wavier in the azimuthal direction than the streamwise direction. The UMZs in the near-wall region capture the small-scale velocity fluctuation of the near-wall cycle and show asymmetric modulation of \(Q2\) ejections over \(Q4\) sweeps. The asymmetric modulation of ejections over sweeps decreases from the wall towards the pipe centre and the opposite trend of elevated \(Q4\) sweeps is observed for the innermost UMZs. Near the wall, the ejection regions are very spiky compared to the flat sweep regions whereas, in the pipe centre, the large-scale ejections are relatively flat and the sweep regions are spikier.

MSC:
76F40 Turbulent boundary layers
Software:
Nek5000
PDF BibTeX Cite
Full Text: DOI
References:
[1] Adrian, R., Meinhart, C. & Tompkins, C. D.2000Vortex organisation in the outer region of the turbulent boundary layer. J. Fluid Mech.422, 1-54. · Zbl 0959.76503
[2] Agostini, L. & Leschziner, M. A.2014On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phys. Fluids26, 075107.
[3] Agostini, L. & Leschziner, M. A.2016Predicting the response of small-scale near-wall turbulence to large-scale outer motions. Phys. Fluids28, 015107.
[4] Antonia, R. A., Teitel, M., Kim, J. & Browne, L. W. B.1992Low-Reynolds-number effects in a fully developed turbulent channel flow. J. Fluid Mech.236, 579-605.
[5] Baars, W. J., Hutchins, N. & Marusic, I.2017Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers. Phil. Trans. R. Soc. Lond. A375, 20160077.
[6] Bautista, J. C. C., Ebadi, A., White, C. M., Chini, G. P. & Klewicki, J. C.2019A uniform momentum zone-vortical fissure model of the turbulent boundary layer. J. Fluid Mech.858, 609-633. · Zbl 1415.76329
[7] Chin, C., Ooi, A. S. H., Marusic, I. & Blackburn, H. M.2010The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Phys. Fluids22 (11), 115107.
[8] Chung, D. & Mckeon, B. J.2010Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech.661, 341-364. · Zbl 1205.76146
[9] El Khoury, G. K., Schlatter, P., Noorani, A., Fischer, P. F., Brethouwer, G. & Johansson, A. V.2013Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust.91 (3), 475-495.
[10] Fan, D., Xu, J., Yao, M. X. & Hickey, J.-P.2019On the detection of internal interfacial layers in turbulent flows. J. Fluid Mech.872, 198-217. · Zbl 1419.76313
[11] Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 nek5000 Web page. .
[12] Ganapathisubramani, B., Longmire, E. K. & Marusic, I.2003Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech.478, 35-46. · Zbl 1032.76500
[13] Hutchins, N. & Marusic, I.2007aEvidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.579, 1-28. · Zbl 1113.76004
[14] Hutchins, N. & Marusic, I.2007bLarge-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A365, 647-664. · Zbl 1152.76421
[15] Illingworth, S. J., Monty, J. P. & Marusic, I.2018Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech.842, 146-162. · Zbl 1419.76392
[16] Jiménez, J., Del Álamo, J. C. & Flores, O.2004The large-scale dynamics of near-wall turbulence. J. Fluid Mech.505, 179-199.
[17] Jung, S. Y. & Chung, Y. M.2012Large-eddy simulations of accelerated turbulent flow in a circular pipe. Intl J. Heat Fluid Flow33 (1), 1-8.
[18] Kevin, M. J. & Hutchins, N.2019The meandering behaviour of large-scale structures in turbulent boundary layers. J. Fluid Mech.865, R1.
[19] Kwon, Y.2016 The quiescent core of turbulent channel and pipe flows. PhD thesis, University of Melbourne.
[20] Kwon, Y. S., Philip, J., De Silva, C. M., Hutchins, N. & Monty, J. P.2014The quiescent core of turbulent channel flow. J. Fluid Mech.751, 228-254. · Zbl 1416.76063
[21] Laskari, A., De Kat, R., Hearst, R. J. & Ganapathisubramani, B.2018Time evolution of uniform momentum zones in a turbulent boundary layer. J. Fluid Mech.842, 554-590. · Zbl 1419.76318
[22] Marusic, I.2001On the role of large-scale structures in wall turbulence. Phys. Fluids13 (3), 735-743. · Zbl 1184.76351
[23] Marusic, I. & Hutchins, N.2008Study of the log-layer structure in wall turbulence over a very large range of Reynolds number. Flow Turbul. Combust.81, 115-130. · Zbl 1391.76178
[24] Marusic, I. & Monty, J. P.2019Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech.51, 49-74.
[25] Mathis, R., Hutchins, N. & Marusic, I.2009aLarge-scale amplitude modulation of the small-scale structures in turbulent boundary layer. J. Fluid Mech.628, 311-337. · Zbl 1181.76008
[26] Mathis, R., Monty, J. P., Hutchins, N. & Marusic, I.2009bComparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids21 (11), 111703. · Zbl 1183.76346
[27] Mckeon, B. J. & Sharma, A. S.2010A critical-layer framework for turbulent pipe flow. J. Fluid Mech.658, 336-382. · Zbl 1205.76138
[28] Meinhart, C. D. & Adrian, R. J.1995On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids694 (7), 694-696.
[29] Metzger, M. M. & Klewicki, J. C.2001A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys. Fluids13 (3), 692701.
[30] Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S.2009A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech.632, 431-442. · Zbl 1183.76036
[31] Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S.2007Large-scale features in turbulent pipe and channel flows. J. Fluid Mech.589, 147-156. · Zbl 1141.76316
[32] Perry, A. E. & Chong, M. S.1982On the mechanism of wall turbulence. J. Fluid Mech.119, 173-217. · Zbl 0517.76057
[33] Rao, K. N., Narasimha, R. & Narayanan, M. A. B.1971The bursting phenomenon in a turbulent boundary layer. J. Fluid Mech.48 (part 2), 339-352.
[34] Saxton-Fox, T. & Mckeon, B. J.2017Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent flows. J. Fluid Mech.826, R6. · Zbl 1430.76279
[35] De Silva, C. M., Hutchins, N. & Marusic, I.2016Uniform momentum zones in turbulent boundary layers. J. Fluid Mech.786, 309-331. · Zbl 1381.76106
[36] De Silva, C. M., Philip, J., Hutchins, N. & Marusic, I.2017Interfaces of uniform momentum zones in turbulent boundary layers. J. Fluid Mech.820, 451-478. · Zbl 1383.76257
[37] Tomkins, C. D. & Adrian, R. J.2003Spanwise structure and scale growth in turbulent boundary layer. J. Fluid Mech.490, 37-74. · Zbl 1063.76514
[38] Wagner, C., Huttl, T. J. & Friedrich, R.2001Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow. Comput. Fluids30 (5), 581-590. · Zbl 1008.76034
[39] Wang, Z., Orlu, R., Schlatter, P. & Chung, Y. M.2018Direct numerical simulation of a turbulent 90 degrees bend pipe flow. Intl J. Heat Fluid Flow73, 199-208.
[40] Yang, J., Hwang, J. & Sung, H. J.2016Structural organization of the quiescent core region in a turbulent channel flow. Intl J. Heat Fluid Flow27, 055103.
[41] Yang, J., Hwang, J. & Sung, H. J.2017Influence of low- and high-speed structures on the quiescent core region in a turbulent pipe flow. In Proceedings of the Tenth International Symposium on Turbulent and Shear Flow Phenomena.
[42] Yang, M., Meng, H. & Sheng, J.2001Dynamics of hairpin vortices generated by a mixing tab in a channel flow. Exp. Fluids30, 705-722.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.