×

Double-quantitative variable consistency dominance-based rough set approach. (English) Zbl 1460.68114

Summary: Rough set model with double quantification satisfies the requirement of quantitative information in practical applications, it has better fault tolerance than probabilistic rough set model considering only relative quantification and graded rough set model considering only absolute quantification. In this paper, two kinds of consistency levels are introduced from the perspective of double quantification in an ordered information system, namely relative quantitative consistency level and absolute quantitative consistency level. The single-quantitative variable consistency dominance-based rough set models based on these two kinds of quantitative consistency levels and their basic properties with the relevant three-way decision rules are discussed respectively in an ordered information system. Moreover, two kinds of double-quantitative variable consistency dominance-based rough set models and their basic properties with the relevant decision rules based on these two kinds of quantitative consistency levels are introduced. A consistency analysis of decision making in a practical case study is used to illustrate and interpret the double-quantitative variable consistency rough set models and the related decision rules in the ordered information system. The obvious shortcomings of dominance-based rough set approach (DRSA) without quantitative information are compared to explain the advantages of the quantitative variable consistency dominance-based rough sets with the two consistency levels in the practical case study.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Błaszczyński, J.; Greco, S.; Słowiński, R.; Szelag, M., Monotonic variable consistency rough set approaches, Int. J. Approx. Reason., 50, 979-999 (2009) · Zbl 1191.68673
[2] Błaszczyński, J.; Słowiński, R.; Szelag, M., Sequential covering rule induction algorithm for variable consistency rough set approaches, Inf. Sci., 181, 987-1002 (2011)
[3] Chen, H.; Li, T.; Cai, Y.; Luo, C.; Fujita, H., Parallel attribute reduction in dominance-based neighborhood rough set, Inf. Sci., 373, 351-368 (2016) · Zbl 1429.68280
[4] Dai, J.; Xu, Q., Approximations and uncertainty measures in incomplete information systems, Inf. Sci., 198, 62-80 (2012) · Zbl 1248.68487
[5] Du, W. S.; Hu, B. Q., Dominance-based rough set approach to incomplete ordered information systems, Inf. Sci., 346, 106-129 (2016) · Zbl 1398.68535
[6] Fan, B.; Tsang, E. C.C.; Xu, W.; Yu, J., Double-quantitative rough fuzzy set based decisions: a logical operators method, Inf. Sci., 378, 264-281 (2017) · Zbl 1429.68284
[7] Greco, S.; Matarazzo, B.; Słowiński, R., A New Rough Set Approach to Evaluation of Bankruptcy Risk (1998), Springer: Springer Berlin, Heidelberg
[8] Greco, S.; Matarazzo, B.; Słowiński, R., A new rough set approach to multicriteria and multi-attribute classification, (Lecture Notes in Artificial Intelligence, vol. 1424 (1998)), 60-67
[9] Greco, S.; Matarazzo, B.; Słowiński, R., Dominance-based rough set approach to decision under uncertainty and time preference, Ann. Oper. Res., 176, 1, 41-75 (2010) · Zbl 1233.91080
[10] Greco, S.; Matarazzo, B.; Słowiński, R., Parameterized rough set model using rough membership and Bayesian confirmation measure, Int. J. Approx. Reason., 49, 2, 285-300 (2008) · Zbl 1191.68678
[11] Greco, S.; Matarazzo, B.; Słowiński, R., Rough approximation by dominance relations, Int. J. Intell. Syst., 17, 2, 153-171 (2002) · Zbl 0997.68135
[12] Greco, S.; Matarazzo, B.; Słowiński, R., Variable consistency model of dominance-based rough set approach, (Lecture Notes in Computer Science, vol. 2005 (2001)), 170-181 · Zbl 1014.68544
[13] Greco, S.; Matarazzo, B.; Słowiński, R.; Stefanowski, J., Variable consistency model of dominance-based rough sets approach, (Proceedings of International Conference on Rough Sets and Current Trends in Computing (2000), Springer: Springer Berlin, Heidelberg), 170-181 · Zbl 1014.68544
[14] Guo, Y.; Tsang, E. C.C.; Xu, W.; Chen, D., Local logical disjunction double-quantitative rough sets, Inf. Sci., 500, 87-112 (2019) · Zbl 1451.68280
[15] Huang, B., Graded dominance interval-based fuzzy objective information systems, Knowl.-Based Syst., 24, 7, 1004-1012 (2011)
[16] Huang, B.; Li, H.; Wei, D., Dominance-based rough set model in intuitionistic fuzzy information systems, Knowl.-Based Syst., 28, 115-123 (2012)
[17] Huang, B.; Wei, D.; Li, H.; Zhuang, Y. L., Using a rough set model to extract rules in dominance-based interval-valued intuitionistic fuzzy information systems, Inf. Sci., 221, 215-229 (2013) · Zbl 1293.68226
[18] Inuiguchi, M.; Yoshioka, Y.; Kusunoki, Y., Variable-precision dominance-based rough set approach and attribute reduction, Int. J. Approx. Reason., 50, 1199-1214 (2009) · Zbl 1191.68681
[19] Kong, Q.; Zhang, X.; Xu, W.; Xie, S., Attribute reducts of multi-granulation information system, Artif. Intell. Rev., 53, 2, 1353-1371 (2020)
[20] Kotłowski, W.; Dembczyński, K.; Greco, S.; Słowiński, R., Stochastic dominance-based rough set model for ordinal classification, Inf. Sci., 178, 21, 4019-4037 (2008) · Zbl 1173.68734
[21] Kryszkiewicz, M., Rough set approach to incomplete information systems, Inf. Sci., 112, 1-4, 39-49 (1998) · Zbl 0951.68548
[22] Lang, G.; Miao, D.; Cai, M., Three-way decision approaches to conflict analysis using decision-theoretic rough set theory, Inf. Sci., 406-407, 185-207 (2017) · Zbl 1431.91113
[23] Lang, G.; Yang, T., Decision-theoretic rough sets-based three-way approximations of interval-valued fuzzy sets, Fundam. Inform., 142, 117-143 (2015) · Zbl 1350.03042
[24] Li, J.; Huang, C.; Qi, J.; Liu, W., Three-way cognitive concept learning via multi-granularity, Inf. Sci., 378, 244-263 (2017) · Zbl 1429.68228
[25] Li, J.; Ren, Y.; Mei, C., A comparative study of multigranulation rough sets and concept lattices via rule acquisition, Knowl.-Based Syst., 91, 152-164 (2016)
[26] Li, M.; Chen, M.; Xu, W., Double-quantitative multigranulation decision-theoretic rough fuzzy set model, Int. J. Mach. Learn. Cybern., 10, 11, 3225-3244 (2019)
[27] Li, S.; Li, T., Incremental update of approximations in dominance-based rough sets approach under the variation of attribute values, Inf. Sci., 294, 348-361 (2015) · Zbl 1360.68840
[28] Li, S.; Li, T.; Liu, D., Incremental updating approximations in dominance-based rough sets approach under the variation of the attribute set, Knowl.-Based Syst., 40, 17-26 (2013)
[29] Li, W.; Pedrycz, W.; Xue, X.; Xu, W.; Fan, B., Distance-based double-quantitative rough fuzzy sets with logic operations, Int. J. Approx. Reason., 101, 206-233 (2018) · Zbl 1448.03043
[30] Li, W.; Pedrycz, W.; Xue, X.; Xu, W.; Fan, B., Fuzziness and incremental information of disjoint regions in double-quantitative decision-theoretic rough set model, Int. J. Mach. Learn. Cybern., 10, 10, 2669-2690 (2019)
[31] Li, W.; Pedrycz, W.; Xue, X.; Zhang, X.; Fan, B.; Long, B., Information measure of absolute and relative quantification in double-quantitative decision-theoretic rough set model, J. Eng., 2018, 16, 1436-1441 (2018)
[32] Li, W.; Xu, W., Double-quantitative decision-theoretic rough set, Inf. Sci., 316, 54-67 (2015) · Zbl 1390.68666
[33] Li, W.; Xu, W., Multigranulation decision-theoretic rough set in ordered information system, Fundam. Inform., 139, 67-89 (2015) · Zbl 1334.68220
[34] Liang, D.; Pedrycz, W.; Liu, D., Determining three-way decisions with decision-theoretic rough sets using a relative value approach, IEEE Trans. Syst. Man Cybern. Syst., 47, 8, 1785-1799 (2017)
[35] Lingras, P.; Chen, M.; Miao, D., Qualitative and quantitative combinations of crisp and rough clustering schemes using dominance relations, Int. J. Approx. Reason., 55, 238-258 (2014) · Zbl 1316.68116
[36] Liu, C.; Miao, D.; Zhang, N., Graded rough set model based on two universes and its properties, Knowl.-Based Syst., 33, 65-72 (2012)
[37] Liu, D.; Li, T.; Li, H., A multiple-category classification approach with decision-theoretic rough sets, Fundam. Inform., 115, 173-188 (2012) · Zbl 1248.68492
[38] Liu, D.; Liang, D.; Wang, C., A novel three-way decision model based on incomplete information system, Knowl.-Based Syst., 91, 32-45 (2016)
[39] Pawlak, Z., Rough sets, J. Comput. Inf. Sci., 11, 5, 341-356 (1982) · Zbl 0501.68053
[40] Qian, Y.; Dang, C.; Liang, J.; Tang, D., Set-valued ordered information systems, Inf. Sci., 179, 16, 2809-2832 (2009) · Zbl 1192.68805
[41] Qian, Y.; Liang, J.; Yao, Y.; Dang, C., MGRS: a multi-granulation rough set, Inf. Sci., 180, 6, 949-970 (2010) · Zbl 1185.68695
[42] Qian, Y.; Zhang, H.; Sang, Y.; Liang, J., Multigranulation decision-theoretic rough sets, Int. J. Approx. Reason., 55, 1, 225-237 (2014) · Zbl 1316.68190
[43] Sang, B.; Guo, Y.; Shi, D.; Xu, W., Decision-theoretic rough set model of multi-source decision systems, Int. J. Mach. Learn. Cybern., 9, 11, 1941-1954 (2018)
[44] Sang, B.; Yang, L.; Chen, H.; Xu, W.; Guo, Y.; Yuan, Z., Generalized multi-granulation double-quantitative decision-theoretic rough set of multi-source information system, Int. J. Approx. Reason., 115, 157-179 (2019) · Zbl 1468.68240
[45] Sun, B.; Ma, W.; Gong, Z., Dominance-based rough set theory over interval-valued information systems, Expert Syst., 31, 2, 185-197 (2014)
[46] Sun, B.; Ma, W.; Li, B.; Li, X., Three-way decisions approach to multiple attribute group decision making with linguistic information-based decision-theoretic rough fuzzy set, Int. J. Approx. Reason., 93, 424-442 (2018) · Zbl 1452.68228
[47] Sun, B.; Ma, W.; Xiao, X., Three-way group decision making based on multigranulation fuzzy decision-theoretic rough set over two universes, Int. J. Approx. Reason., 81, 87-102 (2017) · Zbl 1401.68330
[48] Song, C.; Havlin, S.; Makse, H. A., Self-similarity of complex networks, Nature, 433, 7024, 392-395 (2005)
[49] Tan, A.; Wu, W. Z.; Shi, S.; Zhao, S., Granulation selection and decision making with multigranulation rough set over two universes, Int. J. Mach. Learn. Cybern., 10, 9, 2501-2513 (2019)
[50] Xu, W.; Guo, Y., Generalized multigranulation double-quantitative decision-theoretic rough set, Knowl.-Based Syst., 105, 190-205 (2016)
[51] Xu, W.; Li, W.; Zhang, X., Generalized multigranulation rough sets and optimal granularity selection, Granul. Comput., 2, 4, 271-288 (2017)
[52] Yang, X.; Liang, S.; Yu, H.; Gao, S.; Qian, Y., Pseudo-label neighborhood rough set: measures and attribute reductions, Int. J. Approx. Reason., 105, 112-129 (2019) · Zbl 1452.68236
[53] Yang, X.; Yang, J.; Wu, C.; Yu, D., Dominance-based rough set approach and knowledge reductions in incomplete ordered information system, Inf. Sci., 178, 4, 1219-1234 (2008) · Zbl 1134.68057
[54] Yao, Y., The superiority of three-way decisions in probabilistic rough set models, Inf. Sci., 181, 1080-1096 (2011) · Zbl 1211.68442
[55] Yao, Y., Three-way decisions with probabilistic rough sets, Inf. Sci., 180, 341-353 (2010)
[56] Yao, Y.; Deng, X., Quantitative rough sets based on subsethood measures, Inf. Sci., 267, 306-322 (2014) · Zbl 1339.68249
[57] Yao, Y.; Greco, S.; Slowinski, R., Probabilistic rough sets, (Handbook of Computational Intelligence (2015), Springer: Springer Berlin, Heidelberg), 387-411
[58] Yao, Y.; Lin, T. Y., Graded rough set approximations based on nested neighborhood systems, (Proceedings of 5th European Congress on Intelligent Techniques and Soft Computing, vol. 1 (1997)), 196-200
[59] Yao, Y.; Wong, S. K.; Lingras, P., A decision-theoretic rough set model, (Proceedings of International Symposium on Methodologies for Intelligent Systems, vol. 5 (1990)), 17-25
[60] Yu, J.; Zhang, B.; Chen, M.; Xu, W., Double-quantitative decision-theoretic approach to multigranulation approximate space, Int. J. Approx. Reason., 98, 236-258 (2018) · Zbl 1451.91047
[61] Zhai, L. Y.; Khoo, L. P.; Zhong, Z. W., A dominance-based rough set approach to Kansei Engineering in product development, Expert Syst. Appl., 36, 1, 393-402 (2009)
[62] Zhang, J.; Wong, J. S.; Pan, Y.; Li, T., A parallel matrix-based method for computing approximations in incomplete information systems, IEEE Trans. Knowl. Data Eng., 27, 2, 326-339 (2015)
[63] Zhang, Q.; Yang, S.; Wang, G., Measuring uncertainty of probabilistic rough set model from its three regions, IEEE Trans. Syst. Man Cybern. Syst., 47, 12, 3299-3309 (2017)
[64] Zhang, X.; Miao, D., An expanded double-quantitative model regarding probabilities and grades and its hierarchical double-quantitative attribute reduction, Inf. Sci., 299, 312-336 (2015) · Zbl 1360.68855
[65] Zhang, X.; Miao, D., Double-quantitative fusion of accuracy and importance: systematic measure mining, benign integration construction, hierarchical attribute reduction, Knowl.-Based Syst., 91, 219-240 (2016)
[66] Zhang, X.; Miao, D., Quantitative information architecture, granular computing and rough set models in the double-quantitative approximation space of precision and grade, Inf. Sci., 268, 147-168 (2014) · Zbl 1341.68276
[67] Zhang, X.; Miao, D., Quantitative/qualitative region-change uncertainty/certainty in attribute reduction: comparative region-change analyses based on granular computing, Inf. Sci., 334-335, 174-204 (2016)
[68] Zhang, X.; Miao, D., Two basic double-quantitative rough set models for precision and graded and their investigation using granular computing, Int. J. Approx. Reason., 54, 1130-1148 (2013) · Zbl 1316.68201
[69] Zhang, X.; Mo, Z.; Xiong, F.; Cheng, W., Comparative study of variable precision rough set model and graded rough set model, Int. J. Approx. Reason., 53, 1, 104-116 (2012) · Zbl 1242.68345
[70] Ziarko, W., Variable precision rough set model, J. Comput. Syst. Sci., 46, 1, 39-59 (1993) · Zbl 0764.68162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.