Iterative solvers for Biot model under small and large deformations. (English) Zbl 1460.65117

Summary: We consider \(L\)-scheme and Newton-based solvers for Biot model under large deformation. The mechanical deformation follows the Saint Venant-Kirchoff constitutive law. Furthermore, the fluid compressibility is assumed to be non-linear. A Lagrangian frame of reference is used to keep track of the deformation. We perform an implicit discretization in time (backward Euler) and propose two linearization schemes for solving the non-linear problems appearing within each time step: Newton’s method and \(L\)-scheme. Each linearization scheme is also presented in a monolithic and a splitting version, extending the undrained split methods to non-linear problems. The convergence of the solvers, here presented, is shown analytically for cases under small deformation and numerically for examples under large deformation. Illustrative numerical examples are presented to confirm the applicability of the schemes, in particular, for large deformation.


65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
Full Text: DOI arXiv


[1] Almani, T.; Kumar, K.; Dogru, AH; Singh, G.; Wheeler, MF, Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics, Comput. Methods. Appl. Mech Eng., 311, 180-207 (2016) · Zbl 1439.74183
[2] Anderson, DG, Iterative procedures for nonlinear integral equations, J. ACM, 12, 4, 547-560 (1965) · Zbl 0149.11503
[3] Armero, F., Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions, Comput. Methods. Appl. Mech. Eng., 171, 3, 205-241 (1999) · Zbl 0968.74062
[4] Bangerth, W.; Kanschat, G.; Heister, T.; Heltai, L.; Kanschat, G., The deal.II library version 8.4, J. Numer Math., 24, 135-141 (2016) · Zbl 1348.65187
[5] Bause, M.: Iterative coupling of mixed and discontinuous Galerkin methods for poroelasticity. In: Numerical Mathematics and Advanced Applications ENUMATH 2017, pp 551-560. Springer International Publishing (2019) · Zbl 1425.76127
[6] Bause, M.; Radu, FA; Köcher, U., Space-time finite element approximation of the Biot poroelasticity system with iterative coupling, Comput. Methods. Appl. Mech. Eng., 320, Supplement C, 745-768 (2017) · Zbl 1439.74389
[7] Berger, L.; Bordas, R.; Kay, D.; Tavener, S., A stabilized finite element method for finite-strain three-field poroelasticity, Comput. Mech., 60, 1, 51-68 (2017) · Zbl 1386.74134
[8] Biot, MA, Consolidation settlement under a rectangular load distribution, J. Appl. Phys., 12, 5, 426-430 (1941) · JFM 67.0837.02
[9] Biot, MA, General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01
[10] Biot, MA, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 2, 182-185 (1955) · Zbl 0067.23603
[11] Borregales, M.; Nordbotten, JM; Kumar, K.; Radu, FA, Robust iterative schemes for non-linear poromechanics, Comput. Geosci., 22, 4, 1021-1038 (2017) · Zbl 1402.65109
[12] Both, JW; Borregales, M.; Nordbotten, JM; Kumar, K.; Radu, FA, Robust fixed stress splitting for Biot’s equations in heterogeneous media, Appl. Math Lett., 68, 101-108 (2017) · Zbl 1383.74025
[13] Both, J.W., Kumar, K., Nordbotten, J.M., Pop, I.S., Radu, F.A.: Iterative linearisation schemes for doubly degenerate parabolic equations. In: Numerical Mathematics and Advanced Applications ENUMATH 2017, pp 49-63. Springer International Publishing, Cham (2019) · Zbl 1427.65237
[14] Both, J. W., Kumar, K., Nordbotten, J. M., Radu, F. A.: Iterative methods for coupled flow and geomechanics in unsaturated porous media. In: Proceedings of the Sixth Biot Conference on Poromechanics, vol. 68, pp 101-108 (2017) · Zbl 1383.74025
[15] Both, JW; Kumar, K.; Nordbotten, JM; Radu, FA, Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media, Comput. Math. Appl., 77, 6, 1479-1502 (2019) · Zbl 1442.65251
[16] Brenner, S., Scott, R: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. doi:10.1137/1037111. Springer, New York (2008)
[17] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, Volume 15 of Springer Ser. Comput. Math. (2012), New York: Springer, New York · Zbl 1009.65067
[18] Castelletto, N.; White, JA; Ferronato, M., Scalable algorithms for three-field mixed finite element coupled poromechanics, J. Comput. Phys., 327, 894-918 (2016) · Zbl 1373.76312
[19] Chin, LY; Thomas, LK; Sylte, JE; Pierson, RG, Iterative coupled analysis of geomechanics and fluid flow for rock compaction in reservoir simulation, Oil Gas Sci. Technol., 57, 5, 485-497 (2002)
[20] Coussy, O., A general theory of thermoporoelastoplasticity for saturated porous materials, Trans. Por. Med., 4, 3, 281-293 (1989)
[21] Coussy, O., Mechanics of Porous Continua (1995), New York: Wiley, New York
[22] Coussy, O., Poromechanics (2004), New York: Wiley, New York
[23] Doster, F., Nordbotten, J.M.: Full Pressure Coupling for Geo-mechanical Multi-phase Multi-component Flow Simulations (2015)
[24] Gai, X.; Wheeler, MF, Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity, Numer. Methods Partial. Diff. Equ., 23, 4, 785-797 (2007) · Zbl 1115.74054
[25] Gaspar, FJ; Rodrigo, C., On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics, Comput. Methods Appl. Mech. Eng., 326, Supplement C, 526-540 (2017) · Zbl 1439.74413
[26] Girault, V.; Kumar, K.; Wheeler, MF, Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium, Comput. Geosci., 20, 5, 997-1011 (2016) · Zbl 1391.76650
[27] Hong, Q., Kraus, J., Lymbery, M., Philo, F: Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelastic models. arXiv:1806.00353(2018) · Zbl 1463.65372
[28] Hong, Q., Kraus, J., Lymbery, M., Wheeler, M.F.: Parameter-robust convergence analysis of fixed-stress split iterativemethod for multiple-permeability poroelasticity systems. arXiv:1812.11809v2 (2019) · Zbl 1447.65077
[29] Jeannin, L.; Mainguy, M.; Masson, R.; Vidal-Gilbert, S., Accelerating the convergence of coupled geomechanical-reservoir simulations, Int. J. Numer. Anal. Meth. Geomech., 31, 10, 1163-1181 (2007) · Zbl 1196.74285
[30] Jha, B.; Juanes, R., A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta Geotech., 2, 3, 139-153 (2007)
[31] Kim, J.; Tchelepi, HA; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics. Drained and undrained splits, Comput. Methods. Appl. Mech. Eng., 200, 23-24, 2094-2116 (2011) · Zbl 1228.74106
[32] Knabner, P.; Angerman, L., Numerical Methods for Elliptic and Parabolic Partial Differential Equations, vol. 44 (2003), New York: Springer, New York
[33] Kumar, K.; Pop, I.; Radu, FA, Convergence analysis of mixed numerical schemes for reactive flow in a porous medium, SIAM J. Numer. Anal., 51, 4, 2283-2308 (2013) · Zbl 1311.76063
[34] Lee, JJ; Piersanti, E.; Mardal, K-A; Rognes, ME, A mixed finite element method for nearly incompressible multiple-network poroelasticity, SIAM J. Sci Comput., 41, 2, A722-A747 (2018) · Zbl 1417.65162
[35] Lee, S.; Mikelic, A.; Wheeler, MF; Wick, T., Phase-field modeling of proppant-filled fractures in a poroelastic medium, Comput. Methods Appl. Mech. Eng., 312, 509-541 (2016) · Zbl 1439.74359
[36] Lewis, RW; Sukirman, Y., Finite element modelling of three-phase flow in deforming saturated oil reservoirs, Int. J. Numer. Anal. Meth. Geomech., 17, 8, 577-598 (1993) · Zbl 0785.76042
[37] List, F.; Radu, FA, A study on iterative methods for solving Richards’ equation, Comput. Geosci., 20, 2, 341-353 (2016) · Zbl 1396.65143
[38] Mikelić, A.; Wheeler, MF, Theory of the dynamic Biot-Allard equations and their link to the quasi-static Biot system, J. Math. Phys., 53, 12, 123702 (2012) · Zbl 1331.35283
[39] Mikelić, A.; Wheeler, MF, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 18, 3-4, 325-341 (2013)
[40] Nordbotten, JM, Stable Cell-Centered Finite Volume Discretization for Biot Equations, SIAM J. Numer. Anal., 54, 2, 942-968 (2016) · Zbl 1382.76187
[41] Pettersen, O., Coupled Flow and Rock Mechanics Simulation Optimizing the coupling term for faster and accurate computation, Int. J. Numer. Anal. Model., 9, 3, 628-643 (2012) · Zbl 1277.76078
[42] Phillips, PJ; Wheeler, MF, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case, Comput. Geosci., 11, 2, 131-144 (2007) · Zbl 1117.74015
[43] Pop, IS; Radu, F.; Knabner, P., Mixed finite elements for the Richards’ equation: linearization procedure, J. Comput. Appl. Math., 168, 1-2, 365-373 (2004) · Zbl 1057.76034
[44] Prevost, J.H.: One-Way versus Two-Way Coupling in Reservoir-Geomechanical Models, pp. 517-526. American Society of Civil Engineers (2013)
[45] Radu, F. A.: Mixed finite element discretization of Richards’ equation: error analysis and application to realistic infiltration problems. PhD thesis. University of Erlangen-Nürnberg (2004)
[46] Radu, F. A., Borregales, M., Kumar, K, Gaspar, F., Rodrigo, C.: L-scheme and Newton based solvers for a nonlinear Biot model. In: ECCOMAS Proceedings Glasgow (2018)
[47] Radu, FA; Nordbotten, JM; Pop, IS; Kumar, K., A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media, J. Comput. Appl. Math., 289, 134-141 (2015) · Zbl 1320.76084
[48] Radu, FA; Pop, IS, Newton method for reactive solute transport with equilibrium sorption in porous media, J. Comput. Appl. Math., 234, 7, 2118-2127 (2010) · Zbl 1402.76075
[49] Rodrigo, C.; Gaspar, FJ; Hu, X.; Zikatanov, LT, Stability and monotonicity for some discretizations of the Biot’s consolidation model, Comput. Methods Appl. Mech. Eng., 298, 183-204 (2016) · Zbl 1425.74164
[50] Rodrigo, C.; Hu, X.; Ohm, P.; Adler, JH; Gaspar, FJ; Zikatanov, L., New stabilized discretizations for poroelasticity and the Stokes’ equations, Comput. Methods. Appl. Mech. Eng., 341, 467-484 (2018) · Zbl 1440.76027
[51] Settari, A., Walters, D.A.: Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. Soc. Petrol. Eng. 6(3) (2001)
[52] Showalter, RE, Diffusion in poro-elastic media, J. Math Anal. Appl., 251, 1, 310-340 (2000) · Zbl 0979.74018
[53] Storvik, E.; Both, JW; Kumar, K.; Nordbotten, JM; Radu, FA, On the optimization of the fixed-stress splitting for Biot’s equations, Int. J. Numer. Meth. Eng., 120, 2, 179-194 (2019)
[54] Temam, R., Miranville, A.: Mathematical Modeling in Continuum Mechanics. Cambridge (2005) · Zbl 1077.76001
[55] Wan, J., Durlofsky, L.J., Hughes, T.J.R., Aziz, K.: Stabilized Finite Element Methods for Coupled Geomechanics - Reservoir Flow Simulations (2003)
[56] White, D., Ganis, B., Liu, R., Wheeler, M.F.: Near-Wellbore study with a Drucker-Prager plasticity model coupled with a parallel compositional reservoir simulator. In: Paper SPE-182627-MS SPE Reservoir Simulation Conference (2017)
[57] Yi, S-Y; Bean, ML, Iteratively coupled solution strategies for a four-field mixed finite element method for poroelasticity, Int. J. Numer. Anal. Methods Geomech., 41, 2, 159-179 (2016)
[58] Zienkiewicz, OC; Paul, DK; Chan, AHC, Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems, Int. J. Numer. Meth. Eng., 26, 5, 1039-1055 (1988) · Zbl 0634.73110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.