×

Flocking motion in swarms with limited sensing radius and heterogeneous input constraints. (English) Zbl 1459.93010

Summary: This paper addresses the flocking motion problem for swarms of agents with two restrictions: limited communication/detection ranges and different input constraints. In this problem, the distance between pairs of agents determines if a communication/detection link exists among them, while each agent has a different control action bound. We use the notion of proximity graph to model communication/detection between agents and provide distributed controllers designed for leaderless and leader-followers flocking motion scenarios. Our proposed designs preserve the connectivity of the proximity graph while the control effort satisfies the bound of each particular agent. Unlike previous results, our protocols take advantage of the group’s input heterogeneity to use agents with a greater capacity to compensate for neighbors that are less capable of meeting the group’s requirements. Additionally, our designs are based only on local state errors and are robust to non-modeled edge failures. To illustrate the effectiveness of our proposal, we use numerical simulations of different flocking scenarios.

MSC:

93A16 Multi-agent systems
93A13 Hierarchical systems
93A14 Decentralized systems

Software:

Boids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hamann, H., Swarm Robot. A Formal Approach (2018), Springer International Publishing: Springer International Publishing New York
[2] Bayindir, L., A review of swarm robotics tasks, Neurocomputing, 172, 292-321 (2016)
[3] Howard, A.; Parker, L. E.; Sukhatme, G. S., Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection, Int. J. Rob. Res., 25, 5-6, 431-447 (2006)
[4] Dorigo, M., Swarmanoid: a novel concept for the study of heterogeneous robotic swarms, IEEE Robot. Autom. Mag., 20, 4, 60-71 (2013)
[5] Santos, M.; Daz-Mercado, Y.; Egerstedt, M., Coverage control for multirobot teams with heterogeneous sensing capabilities, IEEE Robot. Autom. Lett., 3, 2, 919-925 (2018)
[6] Martínez, S.; Cortés, J.; Bullo, F., Motion coordination with distributed information, IEEE Control Syst. Mag., 27, 4, 75-88 (2007)
[7] Su, H.; Wang, X., Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning (2013), Springer-Verlag: Springer-Verlag Berlin · Zbl 1366.93002
[8] Reynolds, C. W., Flocks, herds and schools: a distributed behavioral model, ACM SIGGRAPH Comput. Graph., 21, 4, 25-34 (1987)
[9] Bezzo, N.; Griffin, B.; Cruz, P.; Donahue, J.; Fierro, R.; Wood, J., A cooperative heterogeneous mobile wireless mechatronic system, IEEE/ASME Trans. Mechatron., 19, 1, 20-31 (2014)
[10] Aghaeeyan, A.; Abdollahi, F.; Talebi, H. A., UAV guidance for tracking control of mobile robots in presence of obstacles, Proceedings of the International Conference Robotics and Mechatronics, ICRoM 2013, 135-140 (2013)
[11] Potena, C.; Khanna, R.; Nieto, J.; Siegwart, R.; Nardi, D.; Pretto, A., Agricolmap: Aerial-ground collaborative 3d mapping for precision farming, IEEE Robot. Autom. Lett., 4, 2, 1085-1092 (2019)
[12] Ren, W.; Beard, R. W., Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications (2008), Springer-Verlag: Springer-Verlag New York · Zbl 1144.93002
[13] Rahimi, R.; Abdollahi, F.; Naqshi, K., Time-varying formation control of a collaborative heterogeneous multi agent system, Rob. Auton. Syst., 62, 12, 1799-1805 (2014)
[14] Olfati-Saber, R., Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Trans. Automat. Contr., 51, 3, 401-420 (2006) · Zbl 1366.93391
[15] Sun, F.; Wang, R.; Zhu, W.; Li, Y., Flocking in nonlinear multi-agent systems with time-varying delay via event-triggered control, Appl. Math. Comput., 350, 66-77 (2019) · Zbl 1428.93012
[16] Yang, Z.; Zhang, Q.; Chen, Z., Adaptive distributed convex optimization for multi-agent and its application in flocking behavior, J. Frankl. Inst., 356, 1038-1050 (2019) · Zbl 1406.93043
[17] Khateri, K.; Pourgholi, M.; Montazeri, M.; Sabattini, L., A connectivity preserving node permutation local method in limited range robotic networks, Rob. Auton. Syst., 129, 103540 (2020)
[18] Lan, X.; Liu, Y.; Zhao, Z., Cooperative control for swarming systems based on reinforcement learning in unknown dynamic environment, Neurocomputing, 410, 410-418 (2020)
[19] Chen, Z.; Fan, M.-C.; Zhang, H. T., How much control is enough for network connectivity preservation and collision avoidance?, IEEE Trans. Cybern., 45, 8, 1647-1656 (2015)
[20] Gasparri, A.; Leccese, A.; Sabattini, L.; Ulivi, G., Collective control objective and connectivity preservation for multi-robot systems with bounded input, Proceedings of the American Control Conference, 813-818 (2014)
[21] Zhang, H.-T.; Cheng, Z.; Chen, G.; Li, C., Model predictive flocking control for second-order multi-agent systems with input constraints, IEEE Trans. Circuits Syst. I Regul. Pap., 62, 6, 1599-1606 (2015) · Zbl 1468.93045
[22] Zhang, H.-T.; Liu, B.; Cheng, Z.; Chen, G., Model predictive flocking control of the Cucker-Smale multi-agent model with input constraints, IEEE Trans. Circuits Syst. I Regul. Pap., 63, 8, 1265-1275 (2016) · Zbl 1468.94292
[23] Maeda, R.; Endo, T.; Matsuno, F., Decentralized navigation for heterogeneous swarm robots with limited field of view, IEEE Robot. Autom. Lett., 2, 2, 904-911 (2017)
[24] Yoshimoto, M.; Endo, T.; Maeda, R.; Matsuno, F., Decentralized navigation method for a robotic swarm with nonhomogeneous abilities, Auton. Robots, 42, 8, 1583-1599 (2018)
[25] Mesbahi, M.; Egerstedt, M., Graph Theoretic Methods in Multiagent Networks (2010), Princeton University Press: Princeton University Press New York · Zbl 1203.93001
[26] Storms, R. F.; Carere, C.; Zoratto, F.; Hemelrijk, C. K., Complex patterns of collective escape in starling flocks under predation, Behav. Ecol. Sociobiol., 73, 1, 1-10 (2019)
[27] Cortes, J., Discontinuous dynamical systems, IEEE Control Syst., 28, 3, 36-73 (2008) · Zbl 1395.34023
[28] Zhao, Y.; Duan, Z.; Wen, G.; Chen, G., Distributed finite-time tracking for a multi-agent system under a leader with bounded unknown acceleration, Syst. Control Lett., 81, 8-13 (2015) · Zbl 1330.93020
[29] Ghapani, S.; Mei, J.; Ren, W.; Song, Y., Fully distributed flocking with a moving leader for lagrange networks with parametric uncertainties, Automatica, 67, 67-76 (2016) · Zbl 1335.93011
[30] Filippov, A. F.; Arscott, F. M., Differential Equations with Discontinuous Righthand Sides: Control Systems (1988), Springer: Springer Berlin
[31] Wang, L.; Xiao, F., Finite-time consensus problems for networks of dynamic agents, IEEE Trans. Autom. Control, 55, 4, 950-955 (2010) · Zbl 1368.93391
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.