×

zbMATH — the first resource for mathematics

Stress and strain mapping tensors and general work-conjugacy in large strain continuum mechanics. (English) Zbl 1459.74029
Summary: In this paper we show that mapping tensors may be constructed to transform any arbitrary strain measure in any other strain measure. We present the mapping tensors for many usual strain measures in the Seth-Hill family and also for general, user-defined ones. These mapping tensors may also be used to transform their work-conjugate stress measures. These transformations are merely geometric transformations obtained from the deformation gradient and, hence, are valid regardless of any constitutive equation employed for the solid. Then, advantage of this fact may be taken in order to simplify the form of constitutive equations and their numerical implementation and thereafter, perform the proper geometric mappings to convert the results – stresses, strains and constitutive tangents – to usually employed measures and to user-selectable ones for input and output. We herein provide the necessary transformations. Examples are the transformation of small strains formulations and algorithms to large deformations using logarithmic strains.

MSC:
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74A10 Stress
PDF BibTeX Cite
Full Text: DOI
References:
[1] Seth, B. R., Generalized strain measure with applications to physical problems, (Reiner, M.; Abir, D., Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics (1962), Pergamon Press: Pergamon Press Oxford), 162-172
[2] Hill, R., Aspects of invariance in solid mechanics, Adv. Appl. Mech., 18, 1-75 (1979) · Zbl 0475.73026
[3] Doyle, T. C.; Ericksen, J. L., Nonlinear elasticity, Adv. Appl. Mech., 4, 53-115 (1956)
[4] Curnier, A.; Zysset, P., A family of metric strains and conjugate stresses, prolonging usual material laws from small to large transformations, Int. J. Sol. Struct., 43, 10, 3057-3086 (2006) · Zbl 1120.74307
[5] Holzapfel, G. A., Nonlinear Solid Mechanics:A Continuum Approach For Engineering (2000), Wiley, Chichester
[6] Itskov, M.; Aksel, N., A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function, Int. J. Sol. Struct., 41, 3833-3848 (2004) · Zbl 1079.74516
[7] Schmid, H.; Nash, M. P.; Young, A. A.; Hunter, P. J., Myocardial material parameter estimation A comparative study for simple shear, J. Biomech. Eng., 128, 5, 742-750 (2006)
[8] Bathe, K. J., Finite Element Procedures (1996), Prentice-Hall: Prentice-Hall New Jersey
[9] Bathe, K. J.; Ramm, E.; Wilson, E. L., Finite element formulations for large deformation dynamic analysis, Int. J. Numer. Methods Eng., 9, 2, 353-386 (1975) · Zbl 0304.73060
[10] Sussman, T.; Bathe, K. J., A Model of Incompressible Isotropic Hyperelastic Material Behavior using Spline Interpolations of Tension-Compression Test Data, Commun. Numer. Methods Eng., 25, 53-63 (2009) · Zbl 1156.74008
[11] Latorre, M.; Montáns, F. J., Extension of the Sussman-Bathe spline-based hyperelastic model to incompressible transversely isotropic materials, Comput. Struct., 122, 13-26 (2013)
[12] Latorre, M.; Montáns, F. J., What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity, Comput. Mech., 53, 1279-1298 (2014) · Zbl 1398.74028
[13] Reese, S.; Govindjee, S., A theory of1 finite viscoelasticity and numerical aspects, Int. J. Sol. Struct., 35, 26, 3455-3482 (1998) · Zbl 0918.73028
[14] Latorre, M.; Montáns, F. J., Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains, Comput. Mech., 56, 3, 503-531 (2015) · Zbl 1326.74031
[16] Weber, G.; Anand, L., Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Comput. Methods Appl. Mech. Eng., 79, 2, 173-202 (1990) · Zbl 0731.73031
[17] Eterovic, A. L.; Bathe, K. J., A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures, Int. J. Numer. Methods Eng., 30, 6, 1099-1114 (1990) · Zbl 0714.73035
[18] Simo, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Methods Appl. Mech. Eng., 99, 1, 61-112 (1992) · Zbl 0764.73089
[19] Papadopoulos, P.; Lu, J., On the formulation and numerical solution of problems in anisotropic finite plasticity, Comput. Methods Appl. Mech. Eng., 190, 37, 4889-4910 (2001) · Zbl 1001.74020
[20] Miehe, C.; Apel, N.; Lambrecht, M., Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials, Comput. Methods Appl. Mech. Eng., 191, 47, 5383-5425 (2002) · Zbl 1083.74518
[21] Caminero, M. A.; Montáns, F. J.; Bathe, K. J., Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures, Comput. Struct., 89, 11, 826-843 (2011)
[22] Montáns, F. J.; Benítez, J. M.; Caminero, M. A., A large strain anisotropic elastoplastic continuum theory for nonlinear kinematic hardening and texture evolution, Mech. Res. Commun., 43, 50-56 (2012)
[23] Anand, L., On H. Hencky’s approximate strain-energy function for moderate deformations, J. Appl. Mech., 46, 1, 78-82 (1979) · Zbl 0405.73032
[24] Anand, L., Moderate deformations in extension-torsion of incompressible isotropic elastic materials, J. Mech. Phys. Solids, 34, 3, 293-304 (1986)
[25] Latorre, M.; Montáns, F. J., On the interpretation of the logarithmic strain tensor in an arbitrary system of representation, Int. J. Sol. Struct., 51, 7, 1507-1515 (2014)
[26] Latorre, M.; Montáns, F. J., Response to Fiala’s comments on “On the interpretation of the logarithmic strain tensor in an arbitrary system of representation”, Int. J. Sol. Struct., 5657, 292 (2015)
[27] Malvern, L. E., Introduction to the Mechanics of a Continuous Medium (1969), Prentice-Hall
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.