Multistability for nonlinear acoustic-gravity waves in a rotating atmosphere. (English) Zbl 1458.76047

Summary: The multistable states of low-frequency, short-wavelength nonlinear acoustic-gravity waves propagating in a small slope with respect to the vertical ones are explored in a rotating atmosphere. The bifurcation patterns en route to irregular behaviors and the long-term dynamics of the low-order nonlinear model system are studied for varying air Prandtl number \(\sigma\) between 0.5 and 1. In contrast to non-rotation, the transition to the unsteady motion occurs both catastrophically and non-catastrophically due to the Earth’s rotation. The connections between the Prandtl number and the slope parameter on the stabilities of the system are highlighted. The model system exhibits hysteresis-induced multistability with coexisting finite multi-periodic, periodic-chaotic attractors in certain parameter spaces depending on the initial conditions. Studies revealed that the rotation parameter instigates these heterogeneous coexisting attractors, resulting in the unpredictable dynamics. However, the relevance of this study is strongly restricted to a very small vertical wavelength, a small slope, and a weakly stratified atmosphere.
©2021 American Institute of Physics


76E20 Stability and instability of geophysical and astrophysical flows
86A10 Meteorology and atmospheric physics
76U60 Geophysical flows
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI


[1] Fritts, D. C.; Alexander, M. J., Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003 (2003)
[2] Row, R. V., Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake, J. Geophys. Res., 72, 1599-1610 (1967)
[3] Yeh, K. C.; Liu, C. H., Acoustic-gravity waves in the upper atmosphere, Rev. Geophys., 12, 193-216 (1974)
[4] Liu, C., Acoustic gravity waves in the ionosphere/thermosphere system, Adv. Space Res., 12, 187-199 (1992)
[5] Kaladze, T. D.; Pokhotelov, O. A.; Shah, H. A.; Khan, M. I.; Stenflo, L., Acoustic-gravity waves in the Earth’s ionosphere, J. Atmos. Sol. Terr. Phys., 70, 1607-1616 (2008)
[6] Garcia, R. F.; Doornbos, E.; Bruinsma, S.; Hebert, H., Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE, J. Geophys. Res. Atmos., 119, 4498-4506 (2014)
[7] Godin, O. A.; Zabotin, N. A.; Bullett, T. W., Acoustic-gravity waves in the atmosphere generated by infragravity waves in the ocean, Earth Planets Space, 67, 47 (2015)
[8] Shaikh, D.; Shukla, P. K.; Stenflo, L., Spectral properties of acoustic gravity wave turbulence, J. Geophys. Res. Atmos., 113, D06108 (2008)
[9] Stenflo, L., Acoustic solitary vortices, Phys. Fluids, 30, 3297-3299 (1987) · Zbl 0635.76084
[10] Stenflo, L., Equations describing solitary atmospheric waves, Phys. Scr., 43, 599-600 (1991)
[11] Stenflo, L., Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Phys. Scr., 53, 83 (1996)
[12] Stenflo, L., Nonlinear equations for acoustic gravity waves, Phys. Lett. A, 222, 378-380 (1996) · Zbl 1037.76507
[13] Stenflo, L.; Shukla, P. K., Nonlinear acoustic-gravity waves, J. Plasma Phys., 75, 841-847 (2009)
[14] Axelsson, P.; Larsson, J.; Stenflo, L., Nonlinear interaction between acoustic gravity waves in a rotating atmosphere, Nonlinear Process Geophys., 3, 216-220 (1996)
[15] Yu, M. Y.; Zhou, C. T.; Lai, C. H., The bifurcation characteristics of the generalized Lorenz equations, Phys. Scr., 54, 321 (1996) · Zbl 1063.37532
[16] Zhou, C.; Lai, C. H.; Yu, M. Y., Bifurcation behavior of the generalized Lorenz equations at large rotation numbers, J. Math. Phys., 38, 5225-5239 (1997) · Zbl 0897.76038
[17] Zhou, C.; Lai, C. H.; Yu, M. Y., Chaos, bifurcations and periodic orbits of the Lorenz-Stenflo system, Phys. Scr., 55, 394-402 (1997)
[18] Van Gorder, R. A., Shil’nikov chaos in the 4D Lorenz-Stenflo system modeling the time evolution of nonlinear acoustic-gravity waves in a rotating atmosphere, Nonlinear Dyn., 72, 837-851 (2013) · Zbl 1284.37022
[19] Xavier, J. C.; Rech, P. C., Regular and chaotic dynamics of the Lorenz-Stenflo system, Int. J. Bifurcat. Chaos, 20, 145-152 (2010) · Zbl 1183.34065
[20] Park, J.; Lee, H.; Jeon, Y. L.; Baik, J. J., Periodicity of the Lorenz-Stenflo equations, Phys. Scr., 90, 065201 (2015)
[21] Rech, P. C., On the dynamics in parameter planes of the Lorenz-Stenflo system, Phys. Scr., 90, 115201 (2015)
[22] Rech, P. C., Spiral organization of periodic structures in the Lorenz-Stenflo system, Phys. Scr., 91, 075201 (2016)
[23] Gelens, L.; Beri, S.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G., Exploring multistability in semiconductor ring lasers: Theory and experiment, Phys. Rev. Lett., 102, 193904 (2009)
[24] Nicolau, N. S.; Oliveira, T. M.; Hoff, A.; Albuquerque, H. A.; Manchein, C., Tracking multistability in the parameter space of a Chua’s circuit model, Eur. Phys. J. B, 92, 106 (2019)
[25] Layek, G. C.; Pati, N. C., Organized structures of two bidirectionally coupled logistic maps, Chaos, 29, 093104 (2019) · Zbl 1423.37048
[26] Pati, N. C.; Layek, G. C.; Pal, N., Bifurcations and organized structures in a predator-prey model with hunting cooperation, Chaos Soliton. Fract., 140, 110184 (2020)
[27] Pisarchik, A. N.; Feudel, U., Control of multistability, Phys. Rep., 540, 167-218 (2014) · Zbl 1357.34105
[28] Aguirre, J.; Viana, R. L.; Sanjuán, M. A., Fractal structures in nonlinear dynamics, Rev. Mod. Phys., 81, 333 (2009)
[29] Staquet, C.; Sommeria, J., Internal gravity waves: From instabilities to turbulence, Annu. Rev. Fluid Mech., 34, 559-593 (2002) · Zbl 1047.76014
[30] Caillol, P., Nonlinear internal waves in the upper atmosphere, Geophys. Astrophys. Fluid Dyn., 99, 271-308 (2005) · Zbl 1206.86023
[31] Kurgansky, M. V., On the instability of finite-amplitude inertia-gravity waves, Fluid Dyn. Res., 52, 035503 (2020)
[32] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141 (1963) · Zbl 1417.37129
[33] Banerjee, S.; Saha, P.; Chowdhury, A. R., Chaotic scenario in the Stenflo equations, Phys. Scr., 63, 177 (2001) · Zbl 1115.37366
[34] Layek, G. C., An Introduction to Dynamical Systems and Chaos (2015), Springer: Springer, New Delhi · Zbl 1354.34001
[35] Bogdanov, R. I., Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues, Funct. Anal. Appl., 9, 144-145 (1975) · Zbl 0447.58009
[36] Takens, F., Singularities of vector fields, Publ. Math. IHES, 43, 47-100 (1974) · Zbl 0279.58009
[37] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983), Springer-Verlag: Springer-Verlag, New York · Zbl 0515.34001
[38] Layek, G. C.; Pati, N. C., Period-bubbling transition to chaos in thermo-viscoelastic fluid systems, Int. J. Bifurcat. Chaos, 30, 2030013 (2020) · Zbl 1446.34065
[39] Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors (1982), Springer-Verlag: Springer-Verlag, New York · Zbl 0504.58001
[40] Layek, G. C.; Pati, N. C., Bifurcations and chaos in convection taking non-Fourier heat-flux, Phys. Lett. A, 381, 3568-3575 (2017) · Zbl 1375.34064
[41] Wei, Z.; Zhang, W.; Moroz, I.; Kuznetsov, N. V., Codimension one and two bifurcations in Cattaneo-Christov heat flux model, Discrete Contin. Dyn. Syst. B
[42] Layek, G. C.; Pati, N. C., Bifurcations and hyperchaos in magnetoconvection of non-Newtonian fluids, Int. J. Bifurcat. Chaos, 28, 1830034 (2018) · Zbl 1402.34049
[43] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 285-317 (1985) · Zbl 0585.58037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.