zbMATH — the first resource for mathematics

Mixed convolved action for the fractional derivative Kelvin-Voigt model. (English) Zbl 1458.74024
Summary: Based upon the concept of mixed convolved action, a true variational statement for a fractional derivative Kelvin-Voigt model is presented. In this formulation, a single functional is defined as a series of convolution integrals, where the stationarity of this functional leads to all the governing differential equations as well as pertinent initial conditions. Thus, the entire description of a fractional-derivative Kelvin-Voigt model is encapsulated within this framework. This new formulation provides an elegant basis for a development of effective numerical methods involving finite element representation over a temporal domain. Here, the simplest temporal finite element approach is developed, and some computational examples are provided to validate this proposed approach.
MSC:
 74D10 Nonlinear constitutive equations for materials with memory 74S40 Applications of fractional calculus in solid mechanics
Software:
Mathematica; Maple
Full Text:
References:
 [1] Sivaselvan, MV; Reinhorn, AM, Lagrangian approach to structural collapse simulation, J. Eng. Mech. ASCE, 132, 795-805 (2006) [2] Lavan, O.; Sivaselvan, MV; Reinhorn, AM; Dargush, GF, Progressive collapse analysis through strength degradation and fracture in the Mixed Lagrangian Formulation, Earthq. Eng. Struct. D, 38, 1483-1504 (2009) [3] Sivaselvan, MV; Lavan, O.; Dargush, GF; Kurino, H.; Hyodo, Y.; Fukuda, R.; Sato, K.; Apostolakis, G.; Reinhorn, AM, Numerical collapse simulation of large-scale structural systems using an optimization-based algorithm, Earthq. Eng. Struct. D, 38, 655-677 (2009) [4] Apostolakis, G.; Dargush, GF, Mixed Lagrangian formulation for linear thermoelastic response of structures, J. Eng. Mech. ASCE, 138, 508-518 (2012) [5] Apostolakis, G.; Dargush, GF, Mixed variational principles for dynamic response of thermoelastic and poroelastic continua, Int. J. Solids Struct., 50, 642-650 (2013) [6] Apostolakis, G.; Dargush, GF, Variational methods in irreversible thermoelasticity: theoretical developments and minimum principles for the discrete form, ACTA Mech., 224, 2065-2088 (2013) · Zbl 1398.74062 [7] Kim, J.; Dargush, GF; Ju, YK, Extended framework of Hamilton’s principle for continuum dynamics, Int. J. Solids Struct., 50, 3418-3429 (2013) [8] Oldham, KB; Spanier, J., The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (1974), New York: Academic Press, New York · Zbl 0292.26011 [9] Samko, SG; Kilbas, AA; Marichev, OI, Fractional Integrals and Derivatives: Theory and Applications (1993), Philadelphia: Gordon and Breach Science Publishers, Philadelphia · Zbl 0818.26003 [10] Gurtin, ME, Variational principles for linear elastodynamics, Arch. Ration. Mech. Anal., 16, 34-50 (1964) · Zbl 0124.40001 [11] Gurtin, ME, Variational principles for linear initial-value problems, Q. Appl. Math., 22, 252-256 (1964) · Zbl 0173.37602 [12] Tonti, E., On the variational formulation for linear initial value problems, Ann. Mat. Pur. Appl., 95, 331-359 (1973) · Zbl 0278.49047 [13] Dargush, GF, Mixed convolved action for classical and fractional-derivative dissipative dynamical systems, Phys. Rev. E, 86, 066606 (2012) [14] Dargush, GF; Kim, J., Mixed convolved action, Phys. Rev. E, 85, 066606 (2012) [15] Dargush, GF; Darrall, BT; Kim, J.; Apostolakis, G., Mixed convolved action principles in linear continuum dynamics, ACTA Mech., 226, 4111-4137 (2015) · Zbl 1336.74013 [16] Dargush, GF; Apostolakis, G.; Darrall, B.; Kim, J., Mixed convolved action variational principles in heat diffusion, Int. J. Heat Mass Tran., 100, 790-799 (2016) · Zbl 1336.74013 [17] Kim, J.; Shin, J., Mixed convolved action for thermoelasticity, Int. J. Appl. Mech., 10, 1850002 (2018) [18] Darrall, BT; Dargush, GF, Variational principle and time-space finite element method for dynamic thermoelasticity based on mixed convolved action, Eur. J. Mech. A-Solid, 71, 351-364 (2018) · Zbl 1406.74175 [19] Hamilton, WR, On a general method in dynamics, Philos. Trans. R. Soc. Lond., 124, 247-308 (1834) [20] Hamilton, WR, Second essay on a general method in dynamics, Philos. Trans. R. Soc. Lond., 125, 95-144 (1835) [21] Rayleigh, JWS, The Theory of Sound (1877), London: Macmillan, London · JFM 15.0848.02 [22] Schiessel, H.; Metzler, R.; Blumen, A.; Nonnenmacher, TF, Generalized viscoelastic models: their fractional equations with solutions, J. Phys. A-Math. Gen., 28, 6567-6584 (1995) · Zbl 0921.73154 [23] Rossikhin, YA; Shitikova, MV, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev., 63, 010801 (2010) [24] Ingman, D.; Suzdalnitsky, J., Response of viscoelastic plate to impact, J. Vib. Acoust., 130, 011010 (2008) [25] Katsikadelis, JT, Nonlinear dynamic analysis of viscoelastic membranes described with fractional differential models, J. Theor. Appl. Mech., 50, 743-753 (2012) [26] Di Paola, M.; Heuer, R.; Pirrotta, A., Fractional visco-elastic Euler-Bernoulli beam, Int. J. Solids Struct., 50, 3505-3510 (2013) [27] Freundlich, J., Vibrations of a simply supported beam with a fractional viscoelastic material model-supports movement excitation, Shock Vib., 20, 1103-1112 (2013) [28] Demir, DD; Bildik, N.; Sınır, B., Linear dynamical analysis of fractionally damped beams and rods, J. Eng. Math., 85, 131-147 (2014) · Zbl 1359.74204 [29] Cajic, M.; Karlicic, D.; Lazarevic, M., Nonlocal vibration of a fractional order viscoelastic nanobeam with attached nanoparticle, Theor. Appl. Mech., 42, 167-190 (2015) · Zbl 1462.74061 [30] Rossikhin, YA; Shitikova, M., The fractional derivative Kelvin-Voigt model of viscoelasticity with and without volumetric relaxation, J. Phys. Conf. Ser., 991, 012069 (2018) [31] Achar, BNN; Hanneken, JW; Enck, T.; Clarke, T., Dynamics of the fractional oscillator, Phys. A, 297, 361-367 (2001) · Zbl 0969.70511 [32] Stanislavsky, AA, Fractional oscillator, Phys. Rev. E, 70, 051103 (2004) [33] Martinez-Agirre, M.; Elejabarrieta, MJ, Characterisation and modelling of viscoelastically damped sandwich structures, Int. J. Mech. Sci., 52, 1225-1233 (2010) [34] Song, XY; Cao, TN; Gao, PX; Han, QK, Vibration and damping analysis of cylindrical shell treated with viscoelastic damping materials under elastic boundary conditions via a unified Rayleigh-Ritz method, Int. J. Mech. Sci., 165, 105158 (2020) [35] Love, ER; Young, L., On fractional integration by parts, Proc. Lond. Math. Soc., 2, 1-35 (1938) · JFM 64.0197.02 [36] Caputo, M., Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13, 529-539 (1967) [37] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), New York: Elsevier, New York · Zbl 1092.45003 [38] Abdeljawad, T., On Riemann and Caputo fractional differences, Comput. Math. Appl., 62, 1602-1611 (2011) · Zbl 1228.26008 [39] Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (2010), Berlin: Springer, Berlin · Zbl 1215.34001 [40] Caputo, M., Elasticita e dissipazione (1969), Bologna: Zanichelli, Bologna [41] Torvik, PJ; Bagley, RL, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech. Trans. ASME, 51, 294-298 (1984) · Zbl 1203.74022 [42] Beyer, H.; Kempfle, S., Definition of physically consistent damping laws with fractional derivatives, Z. Angew. Math. Mech., 75, 623-635 (1995) · Zbl 0865.70014 [43] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (1999), Sandiego: Academic Press, Sandiego · Zbl 0924.34008 [44] Galucio, AC; Deü, J-F; Mengué, S.; Dubois, F., An adaptation of the Gear scheme for fractional derivatives, Comput. Method Appl. Mech., 195, 6073-6085 (2006) · Zbl 1123.65123 [45] Deü, J-F; Matignon, D., Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme, Comput. Math. Appl., 59, 1745-1753 (2010) · Zbl 1189.65137 [46] Maplesoft, MAPLE, Canada (2009) [47] W.R. Inc, Mathematica. Champaign, Illinois (2019) [48] Benguria, R.; Depassier, M., Variational principle for limit cycles of the Rayleigh-van der Pol equation, Phys. Rev. E, 59, 4889-4893 (1999) [49] Liu, Y.; Mojahed, A.; Bergman, LA; Vakakis, AF, A new way to introduce geometrically nonlinear stiffness and damping with an application to vibration suppression, Nonlinear Dyn., 96, 1819-1845 (2019) · Zbl 1437.70034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.