×

Digital quantum simulation of hadronization in Yang-Mills theory. (English) Zbl 1457.81072

Summary: A quantum algorithm of \(\operatorname{SU}(N)\) Yang-Mills theory is formulated in terms of quantum circuits. It can nonperturbatively calculate the Dyson series and scattering amplitudes with polynomial complexity. The gauge fields in the interaction picture are discretized on the same footing with the lattice fermions in momentum space to avoid the fermion doubling and the gauge symmetry breaking problems. Applying the algorithm to the quantum simulation of quantum chromodynamics, the quark and gluon’s wave functions evolved from the initial states by the interactions can be observed and the information from wave functions can be extracted at any discrete time. This may help us understand the natures of the hadronization which has been an outstanding question of significant implication on high energy phenomenological studies.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81P68 Quantum computation
68Q12 Quantum algorithms and complexity in the theory of computing
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81U05 \(2\)-body potential quantum scattering theory
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
81V74 Fermionic systems in quantum theory
81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
81-10 Mathematical modeling or simulation for problems pertaining to quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Wilson, K. G., Phys. Rev. D10 (1974) 2445.
[2] Feynman, R. P., Int. J. Theor. Phys.21 (1982) 467.
[3] Lloyd, S., Science273 (1996) 1073.
[4] Lanyon, B. P., Hempel, C., Nigg, D., Müller, M., Gerritsma, R., Zähringer, F., Schindler, P., Barreiro, J. T., Rambach, M. and Kirchmair, G., Science334 (2011) 57.
[5] Georgescu, I. M., Ashhab, S. and Nori, F., Rev. Mod. Phys.86 (2014) p. 153.
[6] Lamata, L., Mezzacapo, A., Casanova, J. and Solano, E., EPJ Quantum Technol.1 (2014) 9.
[7] Paraoanu, G. S., J. Low Temp. Phys.175 (2014) 633.
[8] Barends, R.et al., Nat. Commun.6 (2015) 7654.
[9] Somaroo, S., Tseng, C. H., Havel, T. F., Laflamme, R. and Cory, D. G., Phys. Rev. Lett.82 (1999) 5381.
[10] Cirac, J. I. and Zoller, P., Nat. Phys.8 (2012) 264.
[11] Blatt, R. and Roos, C. F., Nat. Phys.8 (2012) 277.
[12] Arrazola, I., Pedernales, J. S., Lamata, L. and Solano, E., Sci. Rep.6 (2016) 30534.
[13] Casanova, J., Lamata, L., Egusquiza, I. L., Gerritsma, R., Roos, C. F., García-Ripoll, J. J. and Solano, E., Phys. Rev. Lett.107 (2011) 260501.
[14] Zhang, X., Zhang, K., Shen, Y., Zhang, S., Zhang, J., Yung, M., Casanova, J., Pedernales, J. S., Lamata, L., Solano, E. and Kim, K., Nat. Commun.9 (2018) 195.
[15] Notarnicola, S., Ercolessi, E., Facchi, P., Marmo, G., Pascazio, S. and Pepe, F. V., J. Phys. A48 (2015).
[16] Hauke, P., Marcos, D., Dalmonte, M. and Zoller, P., Phys. Rev. D3 (2013) 041018.
[17] Marcos, D., Rabl, P., Rico, E. and Zoller, P., Phys. Rev. Lett.111 (2013) 110504.
[18] Rico, E., Zoller, P., Dalmonte, M., Pichler, T. and Montangero, S., Phys. Rev. Lett.112 (2014) 201601.
[19] Zohar, E., Farace, A., Reznik, B. and Cirac, J. I., Phys. Rev. Lett.118 (2017) 070501.
[20] Jordan, S. P., Lee, K. S. M. and Preskill, J., Science336 (2012) 1130.
[21] Jordan, S. P., Lee, K. S. M. and Preskill, J., Quantum Inform. Comput.14 (2014) 1014.
[22] S. P. Jordan, K. S. Lee and J. Preskill, preprint (2014), arXiv:1404.7115.
[23] Moosavian, A. H. and Jordan, S., Phys. Rev. A98 (2018) 012332.
[24] Klco, N. and Savage, M. J., Phys. Rev. A99 (2019) 052335.
[25] Martinez, E. A.et al., Nature534 (2016) 516.
[26] Kokail, C., Maier, C., Bijnen, R. V., Brydges, T., Joshi, M. K., Jurcevic, P., Muschik, C. A., Silvi, P., Blatt, R., Roos, C. F. and Zoller, P., Nature569 (2019) 355.
[27] Byrnes, T. and Yamamoto, Y., Phys. Rev. A73 (2006) 022328.
[28] Zohar, E., Cirac, J. I. and Reznik, B., Phys. Rev. Lett.110 (2013) 125304.
[29] Banerjee, D., Bogli, M., Dalmonte, M., Rico, E., Stebler, P., Wiese, U. J. and Zoller, P., Phys. Rev. Lett.110 (2013) 125303.
[30] Tagliacozzo, L., Celi, A., Orland, P., Mitchell, M. W. and Lewenstein, M., Nat. Commun.4 (2013) 2615.
[31] Wiese, U. J., Nucl. Phys. A931 (2014) 246.
[32] Zohar, E., Cirac, J. I. and Reznik, B., Rep. Prog. Phys.79 (2016) 014401.
[33] Bender, J., Zohar, E., Farace, A. and Cirac, J. I., New J. Phys.20 (2018) 093001.
[34] Mezzacapo, A., Rico, E., Sabín, C., Egusquiza, I. L., Lamata, L. and Solano, E., Phys. Rev. Lett.115 (2015) 240502.
[35] Zohar, E. and Burrello, M., Phys. Rev. D91 (2015) 054506.
[36] Dalmonte, M. and Montangero, S., Contemp. Phys.57 (2016) 388.
[37] Banuls, M. C. and Cichy, K., Rep. Prog. Phys.83 (2020) 024401.
[38] Kugo, T. and Ojima, I., Phys. Lett. B73 (1978) 459.
[39] G. H. Low and N. Wiebe, arXiv:1805.00675.
[40] Drell, S. D., Weinstein, M. and Yankielowicz, S., Phys. Rev. D14 (1976) 487.
[41] Drell, S. D., Weinstein, M. and Yankielowicz, S., Phys. Rev. D14 (1976) 1627.
[42] Karsten, L. H. and Smit, J., Nucl. Phys. B144 (1978) 536.
[43] Karsten, L. H. and Smit, J., Phys. Lett. B85 (1979) 100.
[44] Karsten, L. H. and Smit, J., Nucl. Phys. B183 (1981) 103.
[45] Rabin, J. M., Phys. Rev. D24 (1981) 3218.
[46] Berube, D. and Kroger, H., Phys. Lett. B238 (1990) 348.
[47] Berube, D., Kroger, H., Lafrance, R. and Marleau, L., Phys. Rev. D43 (1991) 1385.
[48] Somma, R., Ortiz, G., Knill, E. and Gubernatis, J., Int. J. Quantum Inform.1 (2003) 189. · Zbl 1069.81013
[49] Bravyi, S. and Kitaev, A., Phys. Rev. A71 (2004) 159.
[50] Seeley, J. T., Richard, M. J. and Love, P. J., J. Chem. Phys.137 (2012) 224109.
[51] Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Information (Cambridge University Press/Tsinghua University Press, 2015). · Zbl 1049.81015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.