×

Discrete resonant Rossby/drift wave triads: explicit parameterisations and a fast direct numerical search algorithm. (English) Zbl 1457.76186

Summary: We report results on the explicit parameterisation of discrete Rossby-wave resonant triads of the Charney-Hasegawa-Mima equation in the small-scale limit (i.e. large Rossby deformation radius), following up from our previous solution in terms of elliptic curves [the first and the last author, Commun. Nonlinear Sci. Numer. Simul. 18, No. 9, 2402–2419 (2013; Zbl 1310.35058)]. We find an explicit parameterisation of the discrete resonant wavevectors in terms of two rational variables. We show that these new variables are restricted to a bounded region and find this region explicitly. We argue that this can be used to reduce the complexity of a direct numerical search for discrete triad resonances. Also, we introduce a new direct numerical method to search for discrete resonances. This numerical method has complexity \(\mathcal{O}(N^3)\) (up to logarithmic factors), where \(N\) is the largest wavenumber in the search. We apply this new method to find all discrete irreducible resonant triads in the wavevector box of size 5000, in a calculation that took about 10.5 days on a 16-core machine. Finally, based on our method of mapping to elliptic curves, we discuss some dynamical implications regarding the spread of quadratic invariants across scales via resonant triad interactions, through the analysis of sharp bounds on the relative sizes of the resonantly interacting wavevectors.

MSC:

76U65 Rossby waves
76M99 Basic methods in fluid mechanics

Citations:

Zbl 1310.35058
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Annenkov, S. Y.; Shrira, V., Sporadic wind wave horse-shoe patterns, Nonlinear Process Geophys, 6, 1, 27-50 (1999) · Zbl 0934.76009
[2] Badulin, S. D.; Shrira, V. I.; Kharif, C.; Ioualalen, M., On two approaches to the problem of instability of short-crested water waves, J Fluid Mech, 303, 297-326 (1995) · Zbl 0945.76025
[3] Benjamin, T. B.; Feir, J., The disintegration of wave trains on deep water part 1. theory, J Fluid Mech, 27, 3, 417-430 (1967) · Zbl 0144.47101
[4] Bouchet, F.; Nardini, C.; Tangarife, T., Kinetic theory and quasi-linear theories of jet dynamics, Zonal jets: phenomenology, genesis, and physics, 368-379 (2019), Cambridge university press
[5] Bouchet, F.; Venaille, A., Zonal flows as statistical equilibria, Zonal jets: phenomenology, genesis, and physics, 347-359 (2019), Cambridge university press
[6] Bustamante, M. D.; Hayat, U., Complete classification of discrete resonant Rossby/drift wave triads on periodic domains, Commun Nonlinear Sci NumerSimul, 18, 9, 2402-2419 (2013) · Zbl 1310.35058
[7] Bustamante, M. D.; Hutchinson, K.; Lvov, Y. V.; Onorato, M., Exact discrete resonances in the Fermi-Pasta-Ulam-Tsingou system, Commun Nonlinear Sci NumerSimul, 73, 437-471 (2019)
[8] Bustamante, M. D.; Quinn, B.; Lucas, D., Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems, Phys Rev Lett, 113, 8, 084502 (2014)
[9] Caillol, P.; Zeitlin, V., Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves, Dyn Atmos Oceans, 32, 2, 81-112 (2000)
[10] Charney, J. G., On the scale of atmospheric motions, Geophys Public, 17, 3-17 (1948)
[11] Cornillon, P. C.; Firing, E.; Thompson, A. F.; Ivanov, L. M.; Kamenkovich, I.; Buckingham, C. E.; Afanasyev, Y. D., Oceans, Zonal jets: phenomenology, genesis, and physics, 46-71 (2019), Cambridge university press
[12] Craik, A. D., Wave interactions and fluid flows (1988), Cambridge university press · Zbl 0712.76002
[13] Düring, G.; Josserand, C.; Rica, S., Weak turbulence for a vibrating plate: can one hear a Kolmogorov spectrum?, Phys Rev Lett, 97, 2, 025503 (2006)
[14] Dyachenko, A.; Lvov, Y.; Zakharov, V. E., Five-wave interaction on the surface of deep fluid, Phys D, 87, 1-4, 233-261 (1995) · Zbl 1194.76026
[15] Farrell, B. F.; Ioannou, P. J., Statistical state dynamics: a new perspective on turbulence in shear flow, Zonal jets: phenomenology, genesis, and physics, 380-400 (2019), Cambridge university press
[16] Galperin, B.; Read, P. L., Zonal jets: phenomenology, genesis, and physics (2019), Cambridge university press
[17] Galtier, S.; Nazarenko, S.; Newell, A. C.; Pouquet, A., A weak turbulence theory for incompressible magnetohydrodynamics, J Plasma Phys, 63, 5, 447-488 (2000)
[18] Harper, K. L.; Bustamante, M. D.; Nazarenko, S. V., Quadratic invariants for discrete clusters of weakly interacting waves, J Phys A, 46, 24, 245501 (2013) · Zbl 1268.76010
[19] Harper, K. L.; Quinn, B. E.; Nazarenko, S. V.; Bustamante, M. D., Zonostrophy and other quadratic invariants in drift and quasi-geostrophic wave turbulence, Zonal jets: phenomenology, genesis, and physics, 360-367 (2019), Cambridge university press
[20] Harris, J.; Bustamante, M. D.; Connaughton, C., Externally forced triads of resonantly interacting waves: boundedness and integrability properties, Commun Nonlinear Sci NumerSimul, 17, 12, 4988-5006 (2012) · Zbl 1416.70013
[21] Hasegawa, A.; Mima, K., Pseudo-three-dimensional turbulence in magnetized nonuniform plasma, Phys Fluids, 21, 1, 87-92 (1978) · Zbl 0374.76046
[22] Hasselmann, K., On the non-linear energy transfer in a gravity-wave spectrum part 1. general theory, J Fluid Mech, 12, 4, 481-500 (1962) · Zbl 0107.21402
[23] Kartashova, E., Discrete wave turbulence, EPL (Europhysics Letters), 87, 4, 44001 (2009)
[24] Kartashova, E.; Kartashov, A., Laminated wave turbulence: generic algorithms I, Int J Modern Phys C, 17, 1579-1596 (2006) · Zbl 1203.76071
[25] Kartashova, E.; Kartashov, A., Laminated wave turbulence: generic algorithms II, Commun Comput Phys, 2, 783-794 (2007) · Zbl 1203.76072
[26] Kartashova, E.; Kartashov, A., Laminated wave turbulence: generic algorithms III, Phys A, 380, 66-74 (2007)
[27] Kartashova, E.; L’Vov, V. S., Model of intraseasonal oscillations in Earth’s atmosphere, Phys Rev Lett, 98, 198501 (2007)
[28] Kartashova, E.; L’Vov, V. S., Cluster dynamics of planetary waves, EPL (Europhysics Letters), 83, 50012 (2008)
[29] Kim, W.; West, B. J., Chaotic properties of internal wave triad interactions, Phys Fluids, 9, 3, 632-647 (1997) · Zbl 1185.76691
[30] Kishimoto, N.; Yoneda, T., A number theoretical observation of a resonant interaction of Rossby waves, Kodai Math J, 40, 1, 16-20 (2017) · Zbl 1428.11058
[31] Kopp, G. S., The arithmetic geometry of resonant Rossby wave triads, SIAM J Appl Algebra Geometry, 1, 1, 352-373 (2017) · Zbl 1374.14021
[32] Krasitskii, V. P., On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves, J Fluid Mech, 272, 1-20 (1994) · Zbl 0815.76016
[33] Krommes, J. A.; Parker, J. B., Statistical closures and zonal flows, Zonal jets: phenomenology, genesis, and physics, 309-331 (2019), Cambridge university press
[34] L’Vov, V.; Nazarenko, S., Discrete and mesoscopic regimes of finite-size wave turbulence, Phys Rev E, 82, 5, 056322 (2010)
[35] L’Vov, Y., Effective five-wave Hamiltonian for surface water waves, Phys Lett A, 230, 1-2, 38-44 (1997) · Zbl 1052.76506
[36] L’Vov, Y. V.; Nazarenko, S.; Pokorni, B., Discreteness and its effect on water-wave turbulence, Phys D, 218, 1, 24-35 (2006) · Zbl 1331.76056
[37] Nazarenko, S., Wave turbulence, 825 (2011), Springer science & business media · Zbl 1220.76006
[38] Parker, J. B.; Krommes, J. A., Zonal flow as pattern formation, Zonal jets: phenomenology, genesis, and physics, 401-418 (2019), Cambridge university press
[39] Peierls, R., Zur kinetischen theorie der wärmeleitung in kristallen, Annalen der Physik, 395, 8, 1055-1101 (1929) · JFM 55.0547.01
[40] Quinn, B. E.; Nazarenko, S. V.; Connaughton, C. P.; Gallagher, S.; Hnat, B., Modulational instability in basic plasma and geophysical models, Zonal jets: phenomenology, genesis, and physics, 255-265 (2019), Cambridge university press
[41] Rink, B., Symmetry and resonance in periodic FPU chains, Commun Math Phys, 218, 3, 665-685 (2001) · Zbl 0997.37057
[42] Terry, P. W., Theory, Zonal jets: phenomenology, genesis, and physics, 181-193 (2019), Cambridge university press
[43] Vedenov, A., Theory of a weakly turbulent plasma, Reviews of plasma physics, 229-276 (1967), Springer
[44] Walsh S., Bustamante M.D. On the convergence of the normal form transformation in discrete Rossby and drift wave turbulence. 2019. arXiv:1904.13272.
[45] Zakharov, V., Weak turbulence in media with a decay spectrum, J Appl Mech Tech Phys, 6, 4, 22-24 (1965)
[46] 1966
[47] 1992 · Zbl 0786.76002
[48] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J Appl Mech Tech Phys, 9, 2, 190-194 (1968)
[49] Zakharov, V. E.; Korotkevich, A. O.; Pushkarev, A.; Dyachenko, A. I., Mesoscopic wave turbulence, J Exp Theor PhysLett, 82, 8, 487-491 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.