×

Self-excited hysteretic negative binomial autoregression. (English) Zbl 1457.62270

Summary: This paper studies an observation-driven model for time series of counts, in which the observations are supposed to follow a negative binomial distribution conditioned on past information with the form of the hysteretic autoregression. As an extension of the classical two-regime threshold process, the hysteretic autoregression enjoys a more flexible regime-switching mechanism. Stability properties of the model are established by the e-chain and Lyapunov’s method. The estimator for regression parameters is obtained by the quasi-maximum likelihood with Poisson-based score estimating function, and the corresponding asymptotic properties are established. Moreover, a reasonable method for selecting search ranges for thresholds is also proposed and simulation studies are considered. As an application, we bring attention to some features of the daily number of trades of Siparex Croissance which have been overlooked in previous studies.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P20 Applications of statistics to economics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agosto, A.; Cavaliere, G.; Kristensen, D.; Rahbek, A., Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX), J. Empir. Finance, 38, 640-663 (2016) · doi:10.1016/j.jempfin.2016.02.007
[2] Ahmad, A.; Francq, C., Poisson QMLE of count time series models, J. Time Ser. Anal., 37, 291-314 (2016) · Zbl 1381.62244 · doi:10.1111/jtsa.12167
[3] Breslow, NE, Extra-Poisson variation in log-linear models, J. R. Stat. Soc. Ser. C, 33, 38-44 (1984)
[4] Brockwell, PJ; Davis, RA, Time Series: Theory and Methods (1991), New York: Springer, New York · Zbl 0709.62080
[5] Brown, BM, Martingale central limit theorems, Ann. Math. Stat., 42, 59-66 (1971) · Zbl 0218.60048 · doi:10.1214/aoms/1177693494
[6] Christou, V.; Fokianos, K., Quasi-likelihood inference for negative binomial time series models, J. Time Ser. Anal., 35, 55-78 (2014) · Zbl 1301.62084 · doi:10.1111/jtsa.12050
[7] Doukhan, P.; Wintenberger, O., Weakly dependent chains with infinite memory, Stoch. Proc. Appl., 118, 1997-2013 (2008) · Zbl 1166.60031 · doi:10.1016/j.spa.2007.12.004
[8] Doukhan, P.; Fokianos, K.; Tjøstheim, D., On weak dependence conditions for Poisson autoregressions, Stat. Probab. Lett., 82, 942-948 (2012) · Zbl 1241.62109 · doi:10.1016/j.spl.2012.01.015
[9] Duflo, M., Random Iterative Models (1997), New York: Springer, New York · Zbl 0868.62069
[10] Ferland, R.; Latour, A.; Oraichi, D., Integer-valued GARCH process, J. Time Ser. Anal., 27, 923-942 (2006) · Zbl 1150.62046 · doi:10.1111/j.1467-9892.2006.00496.x
[11] Fokianos, K.; Rahbek, A.; Tjøstheim, D., Poisson autoregression, J. Am. Stat. Assoc., 104, 1430-1439 (2009) · Zbl 1205.62130 · doi:10.1198/jasa.2009.tm08270
[12] Han, H.; Kristensen, D., Asymptotic theory for the QMLE in GARCH-X models with stationary and non-stationary covariates, J. Bus. Econ. Stat., 32, 416-429 (2014) · doi:10.1080/07350015.2014.897954
[13] Kristensen, D.; Rahbek, A., Asymptotics of the QMLE for a class of ARCH \((q)\) models, Econom. Theory, 21, 946-961 (2005) · Zbl 1081.62065 · doi:10.1017/S0266466605050474
[14] Lawless, JF, Negative binomial and mixed Poisson regression, Can. J. Stat., 15, 209-225 (1987) · Zbl 0632.62060 · doi:10.2307/3314912
[15] Li, G.; Guan, B.; Li, WK; Yu, PLH, Hysteretic autoregressive time series models, Biometrika, 102, 717-723 (2015) · Zbl 1452.62658 · doi:10.1093/biomet/asv017
[16] Li, Q.; Lian, H.; Zhu, F., Robust closed-form estimators for the integer-valued GARCH(1,1) model, Comput. Stat. Data Anal., 101, 209-225 (2016) · Zbl 1466.62141 · doi:10.1016/j.csda.2016.03.006
[17] Liu, M.; Li, Q.; Zhu, F., Threshold negative binomial autoregressive model, Statistics, 53, 1-25 (2019) · Zbl 1414.62374 · doi:10.1080/02331888.2018.1546307
[18] Meyn, P.; Tweedie, L., Markov Chains and Stochastic Stability (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1165.60001
[19] Neumann, M., Absolute regularity and ergodicity of Poisson count processes, Bernoulli, 17, 1268-1284 (2011) · Zbl 1277.60089 · doi:10.3150/10-BEJ313
[20] Tong, H., Non-linear Time Series: A Dynamical System Approach (1990), Oxford: Oxford University Press, Oxford · Zbl 0716.62085
[21] Tong, H.; Lim, KS, Threshold autoregression, limit cycles and cyclical data (with discussions), J. R. Stat. Soc. Ser. B, 42, 245-292 (1980) · Zbl 0473.62081
[22] Truong, B-C; Chen, CWS; Sriboonchitta, S., Hysteretic Poisson INGARCH model for integer-valued time series, Stat. Model., 17, 401-422 (2017) · Zbl 07289490 · doi:10.1177/1471082X17703855
[23] Wang, C.; Liu, H.; Yao, J.; Davis, RA; Li, WK, Self-excited threshold Poisson autoregression, J. Am. Stat. Assoc., 109, 776-787 (2014) · Zbl 1367.62267
[24] Zhu, F., A negative binomial integer-valued GARCH model, J. Time Ser. Anal., 32, 54-67 (2011) · Zbl 1290.62092 · doi:10.1111/j.1467-9892.2010.00684.x
[25] Zhu, F., Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models, J. Math. Anal. Appl., 389, 58-71 (2012) · Zbl 1232.62120 · doi:10.1016/j.jmaa.2011.11.042
[26] Zhu, F., Zero-inflated Poisson and negative binomial integer-valued GARCH models, J. Stat. Plan. Inference, 142, 826-839 (2012) · Zbl 1232.62121 · doi:10.1016/j.jspi.2011.10.002
[27] Zhu, F.; Liu, S.; Shi, L., Local influence analysis for Poisson autoregression with an application to stock transaction data, Stat. Neerl., 70, 4-25 (2016) · Zbl 07776163 · doi:10.1111/stan.12071
[28] Zhu, F.; Shi, L.; Liu, S., Influence diagnostics in log-linear integer-valued GARCH models, AStA Adv. Stat. Anal., 99, 311-335 (2015) · Zbl 1443.62296 · doi:10.1007/s10182-014-0242-4
[29] Zhu, K.; Li, WK; Yu, PLH, Buffered autoregressive models with conditional heteroscedasticity: an application to exchange rates, J. Bus. Econ. Stat., 35, 528-542 (2017) · doi:10.1080/07350015.2015.1123634
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.