zbMATH — the first resource for mathematics

Model-dependence of minimal-twist OPEs in \(d > 2\) holographic CFTs. (English) Zbl 1456.83075
Summary: Following recent work on heavy-light correlators in higher-dimensional conformal field theories (CFTs) with a large central charge \(C_T\), we clarify the properties of stress tensor composite primary operators of minimal twist, \([T^m]\), using arguments in both CFT and gravity. We provide an efficient proof that the three-point coupling \(\left\langle{\mathcal{O}}_L{\mathcal{O}}_L\left[{T}^m\right]\right\rangle \), where \({\mathcal{O}}_L\) is any light primary operator, is independent of the purely gravitational action. Next, we consider corrections to this coupling due to additional interactions in AdS effective field theory and the corresponding dual CFT. When the CFT contains a non-zero three-point coupling \(\left\langle TT{\mathcal{O}}_L\right\rangle \), the three-point coupling \(\left\langle{\mathcal{O}}_L{\mathcal{O}}_L\left[{T}^2\right]\right\rangle\) is modified at large \(C_T\) if \(\left\langle TT{\mathcal{O}}_L\right\rangle \sim \sqrt{C_T} \). This scaling is obeyed by the dilaton, by Kaluza-Klein modes of prototypical supergravity compactifications, and by scalars in stress tensor multiplets of supersymmetric CFTs. Quartic derivative interactions involving the graviton and the light probe field dual to \({\mathcal{O}}_L\) can also modify the minimal-twist couplings; these local interactions may be generated by integrating out a spin-\( \mathcal{l} \geq 2\) bulk field at tree level, or any spin \(\mathcal{l}\) at loop level. These results show how the minimal-twist OPE coefficients can depend on the higher-spin gap scale, even perturbatively.

83E05 Geometrodynamics and the holographic principle
83E15 Kaluza-Klein and other higher-dimensional theories
83E50 Supergravity
83C45 Quantization of the gravitational field
81T60 Supersymmetric field theories in quantum mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R15 Operator algebra methods applied to problems in quantum theory
Full Text: DOI arXiv
[1] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[2] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[3] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[4] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].
[5] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions from conformal field theory, JHEP12 (2017) 049 [arXiv:1610.09378] [INSPIRE]. · Zbl 1383.83024
[6] Camanho, XO; Edelstein, JD; Maldacena, JM; Zhiboedov, A., Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP, 02, 020 (2016) · Zbl 1388.83093
[7] Fitzpatrick, AL; Katz, E.; Poland, D.; Simmons-Duffin, D., Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP, 07, 023 (2011) · Zbl 1298.81212
[8] Fitzpatrick, AL; Huang, K-W, Universal Lowest-Twist in CFTs from Holography, JHEP, 08, 138 (2019) · Zbl 1421.83100
[9] A.L. Fitzpatrick, K.-W. Huang and D. Li, Probing universalities in d > 2 CFTs: from black holes to shockwaves, JHEP11 (2019) 139 [arXiv:1907.10810] [INSPIRE]. · Zbl 1429.81070
[10] Li, Y-Z; Mai, Z-F; Lü, H., Holographic OPE Coefficients from AdS Black Holes with Matters, JHEP, 09, 001 (2019) · Zbl 1423.83073
[11] M. Kulaxizi, G.S. Ng and A. Parnachev, Subleading Eikonal, AdS/CFT and Double Stress Tensors, JHEP10 (2019) 107 [arXiv:1907.00867] [INSPIRE]. · Zbl 1427.81139
[12] Karlsson, R.; Kulaxizi, M.; Parnachev, A.; Tadić, P., Leading Multi-Stress Tensors and Conformal Bootstrap, JHEP, 01, 076 (2020) · Zbl 1434.81104
[13] Li, Y-Z, Heavy-light Bootstrap from Lorentzian Inversion Formula, JHEP, 07, 046 (2020)
[14] Karlsson, R., Multi-stress tensors and next-to-leading singularities in the Regge limit, JHEP, 08, 037 (2020)
[15] Li, Y-Z; Zhang, H-Y, More on heavy-light bootstrap up to double-stress-tensor, JHEP, 10, 055 (2020)
[16] Karlsson, R.; Kulaxizi, M.; Parnachev, A.; Tadić, P., Stress tensor sector of conformal correlators operators in the Regge limit, JHEP, 07, 019 (2020) · Zbl 1451.81271
[17] K.-W. Huang, Stress-tensor commutators in conformal field theories near the lightcone, Phys. Rev. D100 (2019) 061701 [arXiv:1907.00599] [INSPIRE].
[18] K.-W. Huang, Lightcone Commutator and Stress-Tensor Exchange in d > 2 CFTs, Phys. Rev. D102 (2020) 021701 [arXiv:2002.00110] [INSPIRE].
[19] A. Parnachev, Near Lightcone Thermal Conformal Correlators and Holography, arXiv:2005.06877 [INSPIRE].
[20] Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].
[21] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE]. · Zbl 1342.83239
[22] J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops, and 6j Symbols, JHEP03 (2019) 052 [arXiv:1808.00612] [INSPIRE]. · Zbl 1414.81211
[23] Meltzer, D.; Perlmutter, E., Beyond a = c: gravitational couplings to matter and the stress tensor OPE, JHEP, 07, 157 (2018) · Zbl 1395.83092
[24] N. Afkhami-Jeddi, S. Kundu and A. Tajdini, A Conformal Collider for Holographic CFTs, JHEP10 (2018) 156 [arXiv:1805.07393] [INSPIRE]. · Zbl 1402.83037
[25] Cordova, C.; Dumitrescu, TT; Intriligator, K., Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP, 03, 163 (2019) · Zbl 1414.81233
[26] Sleight, C.; Taronna, M., Spinning Witten Diagrams, JHEP, 06, 100 (2017) · Zbl 1380.81362
[27] Maldacena, JM; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106 (2016) · Zbl 1390.81388
[28] Costa, MS; Hansen, T., Conformal correlators of mixed-symmetry tensors, JHEP, 02, 151 (2015) · Zbl 1388.53102
[29] Caron-Huot, S., Analyticity in Spin in Conformal Theories, JHEP, 09, 078 (2017) · Zbl 1382.81173
[30] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP11 (2011) 071 [arXiv:1107.3554] [INSPIRE]. · Zbl 1306.81207
[31] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Blocks, JHEP11 (2011) 154 [arXiv:1109.6321] [INSPIRE]. · Zbl 1306.81148
[32] Giombi, S.; Prakash, S.; Yin, X., A Note on CFT Correlators in Three Dimensions, JHEP, 07, 105 (2013) · Zbl 1342.81492
[33] M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP11 (2017) 193 [arXiv:1702.08471] [INSPIRE]. · Zbl 1383.81231
[34] C. Sleight and M. Taronna, Anomalous Dimensions from Crossing Kernels, JHEP11 (2018) 089 [arXiv:1807.05941] [INSPIRE]. · Zbl 1404.81242
[35] D. Karateev, P. Kravchuk and D. Simmons-Duffin, Harmonic Analysis and Mean Field Theory, JHEP10 (2019) 217 [arXiv:1809.05111] [INSPIRE]. · Zbl 1427.81137
[36] Li, D.; Meltzer, D.; Poland, D., Conformal Collider Physics from the Lightcone Bootstrap, JHEP, 02, 143 (2016)
[37] Hofman, DM; Li, D.; Meltzer, D.; Poland, D.; Rejon-Barrera, F., A Proof of the Conformal Collider Bounds, JHEP, 06, 111 (2016) · Zbl 1388.81048
[38] Karateev, D.; Kravchuk, P.; Simmons-Duffin, D., Weight Shifting Operators and Conformal Blocks, JHEP, 02, 081 (2018) · Zbl 1387.81323
[39] P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP11 (2018) 102 [arXiv:1805.00098] [INSPIRE]. · Zbl 1404.81234
[40] Simmons-Duffin, D., The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP, 03, 086 (2017) · Zbl 1377.81184
[41] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194v2 [INSPIRE]. · Zbl 1097.81735
[42] H. Osborn, Conformal Blocks for Arbitrary Spins in Two Dimensions, Phys. Lett. B718 (2012) 169 [arXiv:1205.1941] [INSPIRE].
[43] G. Policastro and D. Tsimpis, A Note on the quartic effective action of type IIB superstring, Class. Quant. Grav.26 (2009) 125001 [arXiv:0812.3138] [INSPIRE]. · Zbl 1170.83466
[44] Fitzpatrick, AL; Kaplan, J., Unitarity and the Holographic S-matrix, JHEP, 10, 032 (2012) · Zbl 1397.83037
[45] E.Y. Yuan, Loops in the Bulk, arXiv:1710.01361 [INSPIRE].
[46] Meltzer, D.; Perlmutter, E.; Sivaramakrishnan, A., Unitarity Methods in AdS/CFT, JHEP, 03, 061 (2020) · Zbl 1435.83157
[47] Fitzpatrick, AL; Kaplan, J.; Walters, MT; Wang, J., Eikonalization of Conformal Blocks, JHEP, 09, 019 (2015) · Zbl 1388.81660
[48] Aharony, O.; Alday, LF; Bissi, A.; Perlmutter, E., Loops in AdS from Conformal Field Theory, JHEP, 07, 036 (2017) · Zbl 1380.81280
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.