×

zbMATH — the first resource for mathematics

Finite size analysis of a double crossover in transitional wall turbulence. (English) Zbl 1456.76058
MSC:
76F06 Transition to turbulence
82D15 Statistical mechanical studies of liquids
Software:
channelflow
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shuka, V.; Fauve, S.; Brachet, M., Statistical theory of reversals in two-dimensional confined turbulent flows, (2016)
[2] Bouchet, F.; Simonnet, E., Random changes of flow topology in two-dimensional and geophysical turbulence, Phys. Rev. Let., 102, (2009)
[3] Cortet, P. P.; Herbert, E.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Padilla, V., Susceptibility divergence, phase transition and multistability of a highly turbulent closed flow, J. Stat. Mech., (2011)
[4] Huisman, S. G.; van der Veen, R. C A.; Sun, C.; Lohse, D., Multiple sates in highly turbulent Taylor-Couette flow, Nat. Commun., 5, 3820, (2014)
[5] Ansorge, C.; Mellado, J. P., Global intermittency and collapsing turbulence in the stratified planetary boundary layer, Bound.-Layer Meteorol., 153, 89-116, (2014)
[6] Mahrt, L., Stably stratified atmospheric boundary layers, Ann. Rev. Fluid Mech., 46, 23-45, (2014) · Zbl 1297.76077
[7] van de Wiel, B. J H.; Moene, A. F.; Steeneveld, G. J.; Hartogensis, O. K.; Holtslag, A. A M., Predicting the collapse of turbulence in stably stratified boundary layers, Flow Turbul. Combust., 79, 251-274, (2007) · Zbl 1258.76100
[8] Brethouwer, G.; Duguet, Y.; Schlatter, P., Laminar-turbulent coexistance in wall flows with Coriolis, buyancy or Lorentz forces, J. Fluid Mech., 704, 137-172, (2012) · Zbl 1246.76028
[9] Coles, D.; Van Atta, C., Measured distortion of a laminar circular Couette flow by ends effects, J. Fluid Mech., 25, 513-521, (1966)
[10] Sano, M.; Tamai, K., A universal transition to turbulence in channel flow, Nat. Phys., 12, 249-253, (2016)
[11] Manneville, P., Dissipative Structures and Weak Turbulence, (1990), New York: Academic, New York · Zbl 0714.76001
[12] Barkley, D., Simplifying the complexity of pipe flow, Phys. Rev. E, 84, (2011)
[13] Pomeau, Y., Front motion, metastability and subcritical bifurcations in hydrodynamics, Physica D, 23, 3-11, (1986)
[14] Ettoumi, W.; Kasparian, J.; Wolf, J-P, Laser filamentation as a new phase transition universality class, Phys. Rev. Let., 114, (2015)
[15] Takeuchi, K. A.; Kuroda, M.; Chaté, H.; Sano, M., Experimental realization of directed percolation criticality in turbulent liquid crystals, Phys. rev. E, 80, (2009)
[16] Rolland, J.; Manneville, P., Ginzburg-Landau description of laminar-turbulent oblique bands in transitional plane Couette flow, Eur. Phys. J. B, 80, 529-544, (2011)
[17] Tuckerman, L. S.; Barkley, D., Patterns and dynamics in transitional plane Couette flow, Phys. Fluids, 23, (2011) · Zbl 1308.76135
[18] Manneville, P., On the decay of turbulence in plane Couette flow, Fluid Dyn. Res., 43, (2011) · Zbl 1421.76108
[19] Prigent, A.; Grégoire, G.; Chaté, H.; Dauchot, O.; van Saarlos, W., Large-scale finite wavelength modulation within turbulent shear slow, Phys. Rev. Lett., 89, (2002)
[20] Rolland, J.; Manneville, P., Temporal fluctuations of laminar turbulent oblique bands in transitional plane Couette flow, J. Stat. Phys., 142, 577-591, (2011) · Zbl 1213.76095
[21] Gibson, J.; Halcrow, J.; Cvitanović, P., Visualizing the geometry of state space in plane Couette flow, J. Fluid Mech., 611, 107-130, (2008) · Zbl 1151.76453
[22] Manneville, P.; Rolland, J., On modelling transitional turbulent flows using under-resolved direct numerical simulations, Theor. Comput. Fluid Dyn., 25, 407-420, (2011) · Zbl 1272.76140
[23] Gardiner, C. W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, (2003), Berlin: Springer, Berlin
[24] Van Kampen, N. G., Stochastic Processes in Physics and Chemistry, (1990), Amsterdam: North-Holland, Amsterdam · Zbl 0974.60020
[25] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Mod. Phys., 65, 851-1123, (1993) · Zbl 1371.37001
[26] Landau, L. D.; Lifshitz, E., Statistical Physics, (1980), Oxford: Butterworth-Heinemann, Oxford
[27] Zinn-Justin, J., Phase Transitions and Renormalization Group, (2007), Oxford: Oxford University Press, Oxford · Zbl 1137.82002
[28] Engel, M.; Anderson, J. A.; Glotzer, S. C.; Isobe, M.; Bernard, E. P.; Krauth, W., Hard disk equation of state: first order liquid hexatic transition in two dimension with three simulations methods, Phys. Rev. E, 87, (2013)
[29] Kapfer, S. C.; Krauth, W., Two-dimensional melting: from liquid-hexatic coexistence to continuous transitions, Phys. Rev. Let., 114, (2015)
[30] Rolland, J., Mechanical and statistical study of the laminar hole formation in transitional plane Couette flow, Eur. Phys. J. B, 88, 66, (2015)
[31] Rolland, J., Stochastic analysis of the time evolution of laminar-turbulent bands of plane Couette flow, Eur. J. Phys. E, 38, 121, (2015)
[32] Bray, A. J., Theory of phase ordering kinetics, Adv. Phys., 51, 481-587, (2002)
[33] Philip, J.; Manneville, P., From temporal to spatiotemporal dynamics in transitional plane Couette flow, Phys. Rev. E, 83, (2011)
[34] Chantry, M.; Tuckerman, L. S.; Barkley, D., Laminar-turbulent patterns in shear flows without walls, J. Fluid Mech., 791, R8, (2016) · Zbl 1382.76106
[35] Chantry, M.; Tuckerman, L. S.; Barkley, D., Universal transition to turbulence in planar shear flow, (2017) · Zbl 1374.76085
[36] Manneville, P., Spatiotemporal perspective on the decay of turbulence in wall-bounded flows, Phys. Rev. E, 79, (2009)
[37] Prigent, A.; Gregoire, G.; Chaté, H.; Dauchot, O., Long-wavelength modulation of turbulent shear flows, Physica D, 174, 100-113, (2002) · Zbl 1036.76023
[38] Rolland, J.; Bouchet, F.; Simonnet, E., Computing transition rates for the 1D stochastic Ginzburg-Landau-Allen-Cahn equation for finite-amplitude noise with a rare event algorithm, J. Stat. Phys., 162, 277-311, (2016) · Zbl 1334.35330
[39] Binder, K.; Landau, D. P., A Guide to Monte-Carlo Simulations in Statistical Physics, (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1086.82001
[40] Dijkstra, H., Non Linear Climate Dynamics, (2013), Cambridge: Cambridge University Press, Cambridge
[41] Arnold, L., Random Dynamical Systems, (1998), Berlin: Springer, Berlin
[42] Kittel, C., Introduction to Solid State Physics, (2007), Hoboken, NJ: Wiley, Hoboken, NJ
[43] Ashcroft, N. W.; Mermin, D., Solid State Physics, (2002), New York: Holt Rinehart and Winston, New York · Zbl 1118.82001
[44] Fogedby, H. C.; Hertz, J.; Svane, A., Wall propagation and nucleation in a metastable two-level system, Phys. Rev. E, 70, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.