zbMATH — the first resource for mathematics

Rapid distortion theory analysis on the interaction between homogeneous turbulence and a planar shock wave. (English) Zbl 1456.76057
Summary: The interactions between homogeneous turbulence and a planar shock wave are analytically investigated using rapid distortion theory (RDT). Analytical solutions in the solenoidal modes are obtained. Qualitative answers to unsolved questions in a report by Y. Andreopoulos et al. [Shock wave – turbulence interactions”, Ann. Rev. Fluid Mech. 524, 309–345 (2000; doi:10.1146/annurev.fluid.32.1.309)] are provided within the linear theoretical framework. The results show that the turbulence kinetic energy (TKE) is increased after interaction with a shock wave and that the contributions to the amplification can be interpreted primarily as the combined effect of shock-induced compression, which is a direct consequence of the Rankine-Hugoniot relation, and the nonlinear effect, which is an indirect consequence of the Rankine-Hugoniot relation via the perturbation manner. For initial homogeneous axisymmetric turbulence, the amplification of the TKE depends on the initial degree of anisotropy. Furthermore, the increase in energy at high wavenumbers is confirmed by the one-dimensional spectra. The enstrophy is also increased; its increase is more significant than that of the TKE because of the significant increase in enstrophy at high wavenumbers. The vorticity components perpendicular to the shock-induced compressed direction are amplified more than the parallel vorticity component. These results strongly suggest that a high resolution is needed to obtain accurate results for the turbulence-shock-wave interaction. The integral length scales \((L)\) and the Taylor microscales \((\lambda)\) are decreased for most cases after the interaction. However, \(L_{22,3}(=\,L_{33,2})\) and \(\lambda_{22,3}(=\,\lambda_{33,2})\) are amplified. Here, the subscripts 2 and 3 indicate the perpendicular components relative to the shock-induced compressed direction. The dissipation length and TKE dissipation rate are amplified.

76F05 Isotropic turbulence; homogeneous turbulence
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI
[1] Agui, J. H.; Briassulis, G.; Andreopoulos, J., Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields, J. Fluid Mech., 524, 143-195, (2005) · Zbl 1060.76500
[2] Andreopoulos, J.; Agui, J. H.; Briassulis, G., Shock wave – turbulence interaction, Annu. Rev. Fluid Mech., 524, 309-345, (2000) · Zbl 0988.76048
[3] Armstrong, J. W.; Rickett, B. J.; Spranger, S. R., Electro density power spectrum in the local interstellar medium, Astrophys. J., 443, 209-221, (1995)
[4] Barre, S.; Alem, D.; Bonnet, J. P., Experimental study of a normal shock/homogeneous turbulence interaction, AIAA J., 34, 968-974, (1996)
[5] Batchelor, G. K., The theory of axisymmetric turbulence, Proc. R. Soc. Lond. A, 186, 480-502, (1946) · Zbl 0061.45503
[6] Batchelor, G. K., The Theory of Homogeneous Turbulence, (1953), Cambridge University Press · Zbl 0053.14404
[7] Bertoglio, J. P.; Bataille, F.; Marion, J. D., Two – point closures for weakly compressible turbulence, Phys. Fluids, 13, 290-310, (2001) · Zbl 1184.76054
[8] Briassulis, G.; Agui, J. H.; Andreopoulos, J.; Watkins, C. B., A shock tube research facility for high-resolution measurements of compressible turbulence, Exp. Therm. Fluid Sci., 13, 430-446, (1996)
[9] Cambon, C.; Mansour, N. N.; Godefeferd, F. S., Energy transfer in rotating turbulence, J. Fluid Mech., 337, 303-332, (1997) · Zbl 0891.76044
[10] Cambon, C.; Teissèdre, C., Application des harmoniques sphériques à la représentation et au calcul des grandeurs cinématiques en turbulence homogène anisotrope, C. R. Acad. Sci. Paris II, 301, 65-68, (1985) · Zbl 0579.76061
[11] Chandrasekhar, S., The theory of axisymetric turbulence, Phil. Trans. R. Soc. Lond. A, 242, 557-577, (1950) · Zbl 0037.40602
[12] Craik, A. D. D.; Criminale, W. O., Evolution of wavelike disturbances in shear flows: a class of exact solutions of Navier-Stokes equations, Proc. R. Soc. Lond. A, 406, 13-26, (1986) · Zbl 0602.76032
[13] Davidson, P. A., Turbulence: An Introduction for Scientists and Engineers, (2004), Oxford University Press · Zbl 1061.76001
[14] Durbin, P. A.; Zeman, O., Rapid distortion theory for homogeneous compressed turbulence with application to modelling, J. Fluid Mech., 242, 349-370, (1992) · Zbl 0825.76343
[15] Grube, N. E., Taylor, E. M. & Martin, M. P.2011 Numerical investigation of shock wave/isotropic turbulence interaction. In 49th AIAA Aerospace Sciences Meeting.
[16] Hanazaki, H.; Hunt, J. C. R., Linear processes in unsteady stably stratified turbulence, J. Fluid. Mech., 318, 303-337, (1996) · Zbl 0894.76029
[17] Hanazaki, H.; Hunt, J. C. R., Structure of unsteady stably stratified turbulence with mean shear, J. Fluid. Mech., 507, 1-42, (2004) · Zbl 1065.76107
[18] Hannappel, R.; Friedrich, R., Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence, Appl. Sci. Res., 54, 205-221, (1995) · Zbl 0853.76047
[19] Honkan, A.; Andreopoulos, J., Rapid compression of grid-generated turbulence by a moving shock wave, Phys. Fluids, 4, 2562-2572, (1992)
[20] Hunt, J. C. R.; Carruthers, D. J., Rapid distortion theory and the ‘problems’ of turbulence, J. Fluid Mech, 212, 497-532, (1990) · Zbl 0692.76054
[21] Hunt, J. C. R. & Kevlahan, N.1993Rapid distortion theory and the structure of turbulence. In New Approaches and Concepts in Turbulence, pp. 285-316. doi:10.1007/978-3-0348-8585-0_17
[22] Jacquin, L.; Cambon, C.; Blin, E., Turbulence amplification by a shock wave and rapid distortion theory, Phys. Fluids, 5, 2539-2550, (1993) · Zbl 0799.76029
[23] Keller, J.; Merzkirch, W., Interaction of a normal shock wave with a compressible turbulent flow, Exp. Fluids, 8, 241-248, (1990)
[24] Kevlahan, N. K. R., The vorticity jump across a shock in a non-uniform flow, J. Fluid Mech., 341, 371-384, (1997) · Zbl 0898.76050
[25] Kevlahan, N. K. R.; Hunt, J. C. R., Nonlinear interactions in turbulence with strong irrotational straining, J. Fluid Mech., 337, 333-364, (1997) · Zbl 0892.76037
[26] Kitamura, T.; Nagata, K.; Sakai, Y.; Sasoh, A.; Terashima, O.; Saito, H.; Harasaki, T., On invariants in grid turbulence at moderate Reynolds numbers, J. Fluid Mech., 738, 378-406, (2014)
[27] Krogstad, P. Å.; Davidson, P. A., Is grid turbulence Saffman turbulence?, J. Fluid Mech., 642, 373-394, (2010) · Zbl 1183.76749
[28] Larsson, J.; Bermejo-Moreno, I.; Lele, S. K., Reynolds- and Mach-number effects in canonical shock – turbulence interaction, J. Fluid Mech., 717, 293-321, (2013) · Zbl 1284.76241
[29] Larsson, J.; Lele, S. K., Direct numerical simulation of canonical shock/turbulence interaction, Phys. Fluids, 21, (2009) · Zbl 1183.76296
[30] Lee, L.; Lele, S. K.; Moin, P., Direct numerical simulation of isotropic turbulence interacting with a weak shock wave, J. Fluid Mech., 251, 533-562, (1993)
[31] Lee, L.; Lele, S. K.; Moin, P., Interaction of isotropic turbulence with shock wave: effect of shock strength, J. Fluid Mech., 340, 225-247, (1997) · Zbl 0899.76194
[32] Mahesh, K.; Lele, S. K.; Moin, P., The response of anisotropic turbulence to rapid homogeneous one-dimensional compression, Phys. Fluids, 6, 1052-1062, (1994) · Zbl 0825.76363
[33] Mahesh, K.; Lele, S. K.; Moin, P., The influence of entropy fluctuations on the interaction of turbulence with a shock wave, J. Fluid Mech., 84, 497-516, (1997) · Zbl 0899.76193
[34] Marion, J. D.; Bertoglio, J. P.; Mathieu, J., Spectral study of weakly compressible isotropic turbulence: Part I: direct interaction approximation, C. R. Acad. Sci. Paris II, 307, 1487-1492, (1988) · Zbl 0654.76051
[35] Miville-Deschenes, M. A.; Joncas, G.; Falgarone, E.; Boulanger, F., High resolution 21 cm mapping of the Ursa Major Galatic cirrus: power spectra of the high-latitude H i gas, Astron. Astrophys., 411, 109-121, (2003)
[36] Nagata, K.; Wong, H.; Hunt, J. C. R.; Sajjadi, S. G.; Davidson, P. A., Weak mean flows induced by anisotropic turbulence impinging onto planar and undulating surfaces, J. Fluid Mech., 556, 329-360, (2006) · Zbl 1147.76586
[37] Ribner, H. S. & Tucker, M.1953 Spectrum of turbulence in a contracting stream. NACA Rep. 1113.
[38] Sagaut, P.; Cambon, C., Homogeneous Turbulence Dynamics, (2008), Cambridge University Press · Zbl 1154.76003
[39] Sreenivasan, K. R.; Narasimha, R., Rapid distortion of axisymmetric turbulence, J. Fluid Mech., 84, 497-516, (1978) · Zbl 0371.76047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.