×

Exponential self-similar mixing by incompressible flows. (English) Zbl 1456.35158

Summary: We study the problem of the optimal mixing of a passive scalar under the action of an incompressible flow in two space dimensions. The scalar solves the continuity equation with a divergence-free velocity field, which satisfies a bound in the Sobolev space \( W^{s,p}\), where \( s \geq 0\) and \( 1\leq p\leq \infty \). The mixing properties are given in terms of a characteristic length scale, called the mixing scale. We consider two notions of mixing scale, one functional, expressed in terms of the homogeneous Sobolev norm \( \dot H^{-1}\), the other geometric, related to rearrangements of sets. We study rates of decay in time of both scales under self-similar mixing. For the case \( s=1\) and \( 1 \leq p \leq \infty \) (including the case of Lipschitz continuous velocities and the case of physical interest of enstrophy-constrained flows), we present examples of velocity fields and initial configurations for the scalars that saturate the exponential lower bound, established in previous works, on the time decay of both scales. We also present several consequences for the geometry of regular Lagrangian flows associated to Sobolev velocity fields.

MSC:

35Q35 PDEs in connection with fluid mechanics
76F25 Turbulent transport, mixing
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alberti, Giovanni; Bianchini, Stefano; Crippa, Gianluca, Structure of level sets and Sard-type properties of Lipschitz maps, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12, 4, 863-902 (2013) · Zbl 1295.26016
[2] Alberti, Giovanni; Bianchini, Stefano; Crippa, Gianluca, A uniqueness result for the continuity equation in two dimensions, J. Eur. Math. Soc. (JEMS), 16, 2, 201-234 (2014) · Zbl 1286.35006 · doi:10.4171/JEMS/431
[3] Alberti, Giovanni; Crippa, Gianluca; Mazzucato, Anna L., Exponential self-similar mixing and loss of regularity for continuity equations, C. R. Math. Acad. Sci. Paris, 352, 11, 901-906 (2014) · Zbl 1302.35241 · doi:10.1016/j.crma.2014.08.021
[4] loss G. Alberti, G. Crippa, and A. L. Mazzucato, Loss of regularity for continuity equations with non-Lipschitz velocity, 2018, preprint. arXiv:1802.02081. · Zbl 1422.76078
[5] Ambrosio, Luigi, Transport equation and Cauchy problem for \(BV\) vector fields, Invent. Math., 158, 2, 227-260 (2004) · Zbl 1075.35087 · doi:10.1007/s00222-004-0367-2
[6] Ambrosio, Luigi; Crippa, Gianluca, Continuity equations and ODE flows with non-smooth velocity, Proc. Roy. Soc. Edinburgh Sect. A, 144, 6, 1191-1244 (2014) · Zbl 1358.37046 · doi:10.1017/S0308210513000085
[7] Aref, Hassan, Stirring by chaotic advection, J. Fluid Mech., 143, 1-21 (1984) · Zbl 0559.76085 · doi:10.1017/S0022112084001233
[8] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Rapha\"{e}l, Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 343, xvi+523 pp. (2011), Springer, Heidelberg · Zbl 1227.35004 · doi:10.1007/978-3-642-16830-7
[9] Bedrossian, Jacob; Masmoudi, Nader; Vicol, Vlad, Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the two dimensional Couette flow, Arch. Ration. Mech. Anal., 219, 3, 1087-1159 (2016) · Zbl 1339.35208 · doi:10.1007/s00205-015-0917-3
[10] Bergh, J\`“{o}ran; L\'”{o}fstr\`“{o}m, J\'”{o}rgen, Interpolation spaces. An introduction\upshape, Grundlehren der Mathematischen Wissenschaften, No. 223, x+207 pp. (1976), Springer-Verlag, Berlin-New York
[11] bonicatto S. Bianchini and P. Bonicatto, A uniqueness result for the decomposition of vector fields in \( \mathbbR^d , 2017\), preprint SISSA, http://cvgmt.sns.it/paper/3619. · Zbl 1435.35121
[12] Boffetta, G.; Celani, A.; Cencini, M.; Lacorata, G.; Vulpiani, A., Nonasymptotic properties of transport and mixing\upshape, Chaotic kinetics and transport (New York, 1998), Chaos, 10, 1, 50-60 (2000) · Zbl 0983.76032 · doi:10.1063/1.166475
[13] Bouchut, Fran\c{c}ois; Crippa, Gianluca, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperbolic Differ. Equ., 10, 2, 235-282 (2013) · Zbl 1275.35076 · doi:10.1142/S0219891613500100
[14] bresch D. Bresch and P.-E. Jabin, Global existence of weak solutions for compresssible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math. 188 (2018), 577-684. · Zbl 1405.35133
[15] Bressan, Alberto, A lemma and a conjecture on the cost of rearrangements, Rend. Sem. Mat. Univ. Padova, 110, 97-102 (2003) · Zbl 1114.05002
[16] sharploss E. Bru\'e and Q.-H. Nguyen, Sharp regularity estimates for solutions of the continuity equation drifted by Sobolev vector fields, 2018, preprint. arXiv:1806.03466. · Zbl 1485.35091
[17] Colombini, Ferruccio; Luo, Tao; Rauch, Jeffrey, Nearly Lipschitzean divergence free transport propagates neither continuity nor BV regularity, Commun. Math. Sci., 2, 2, 207-212 (2004) · Zbl 1088.35015
[18] Constantin, P.; Kiselev, A.; Ryzhik, L.; Zlato\v{s}, A., Diffusion and mixing in fluid flow, Ann. of Math. (2), 168, 2, 643-674 (2008) · Zbl 1180.35084 · doi:10.4007/annals.2008.168.643
[19] Crippa, Gianluca; De Lellis, Camillo, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math., 616, 15-46 (2008) · Zbl 1160.34004 · doi:10.1515/CRELLE.2008.016
[20] Crippa, Gianluca; Schulze, Christian, Cellular mixing with bounded palenstrophy, Math. Models Methods Appl. Sci., 27, 12, 2297-2320 (2017) · Zbl 1379.35236 · doi:10.1142/S0218202517500452
[21] Depauw, Nicolas, Non unicit\'{e} des solutions born\'{e}es pour un champ de vecteurs BV en dehors d’un hyperplan, C. R. Math. Acad. Sci. Paris, 337, 4, 249-252 (2003) · Zbl 1024.35029 · doi:10.1016/S1631-073X(03)00330-3
[22] Di Nezza, Eleonora; Palatucci, Giampiero; Valdinoci, Enrico, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[23] DiPerna, R. J.; Lions, P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 3, 511-547 (1989) · Zbl 0696.34049 · doi:10.1007/BF01393835
[24] Foures, D. P. G.; Caulfield, C. P.; Schmid, P. J., Optimal mixing in two-dimensional plane Poiseuille flow at finite P\'{e}clet number, J. Fluid Mech., 748, 241-277 (2014) · Zbl 1416.76036 · doi:10.1017/jfm.2014.182
[25] Gotoh, Toshiyuki; Watanabe, Takeshi, Scalar flux in a uniform mean scalar gradient in homogeneous isotropic steady turbulence, Phys. D, 241, 3, 141-148 (2012) · doi:10.1016/j.physd.2010.12.009
[26] GDTR09 E. Gouillart, O. Dauchot, J.-L. Thiffeault, and S. Roux, Open-flow mixing: Experimental evidence for strange eigenmodes, Phys. Fluids 21 (2009), no. 2, 023603. · Zbl 1183.76222
[27] Grafakos, Loukas, Modern Fourier analysis, Graduate Texts in Mathematics 250, xvi+624 pp. (2014), Springer, New York · Zbl 1304.42002 · doi:10.1007/978-1-4939-1230-8
[28] Iyer, Gautam; Kiselev, Alexander; Xu, Xiaoqian, Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows, Nonlinearity, 27, 5, 973-985 (2014) · Zbl 1293.35248 · doi:10.1088/0951-7715/27/5/973
[29] Jabin, Pierre-Emmanuel, Critical non-Sobolev regularity for continuity equations with rough velocity fields, J. Differential Equations, 260, 5, 4739-4757 (2016) · Zbl 1347.35075 · doi:10.1016/j.jde.2015.11.028
[30] Jul03 M.-C. Jullien, Dispersion of passive tracers in the direct enstrophy cascade: Experimental observations, Phys. Fluids 15 (2001), no. 8, 2228-2237.
[31] JCT00 M.-C. Jullien, P. Castiglione, and P. Tabeling, Experimental observation of Batchelor dispersion of passive tracers, Phys. Rev. Lett. 85 (2000), no. 17, 3636-3639.
[32] Kiselev, Alexander; Xu, Xiaoqian, Suppression of chemotactic explosion by mixing, Arch. Ration. Mech. Anal., 222, 2, 1077-1112 (2016) · Zbl 1351.35233 · doi:10.1007/s00205-016-1017-8
[33] L\'{e}ger, Flavien, A new approach to bounds on mixing, Math. Models Methods Appl. Sci., 28, 5, 829-849 (2018) · Zbl 1474.76024 · doi:10.1142/S0218202518500215
[34] Lin, Zhi; Thiffeault, Jean-Luc; Doering, Charles R., Optimal stirring strategies for passive scalar mixing, J. Fluid Mech., 675, 465-476 (2011) · Zbl 1241.76361 · doi:10.1017/S0022112011000292
[35] Liu, Weijiu, Mixing enhancement by optimal flow advection, SIAM J. Control Optim., 47, 2, 624-638 (2008) · Zbl 1158.76043 · doi:10.1137/050647888
[36] Liverani, Carlangelo, On contact Anosov flows, Ann. of Math. (2), 159, 3, 1275-1312 (2004) · Zbl 1067.37031 · doi:10.4007/annals.2004.159.1275
[37] Lunasin, Evelyn; Lin, Zhi; Novikov, Alexei; Mazzucato, Anna; Doering, Charles R., Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy flows, J. Math. Phys., 53, 11, 115611, 15 pp. (2012) · Zbl 1302.76076 · doi:10.1063/1.4752098
[38] Mathew, George; Mezi\'{c}, Igor; Grivopoulos, Symeon; Vaidya, Umesh; Petzold, Linda, Optimal control of mixing in Stokes fluid flows, J. Fluid Mech., 580, 261-281 (2007) · Zbl 1275.76088 · doi:10.1017/S0022112007005332
[39] Mathew, George; Mezi\'{c}, Igor; Petzold, Linda, A multiscale measure for mixing, Phys. D, 211, 1-2, 23-46 (2005) · Zbl 1098.37067 · doi:10.1016/j.physd.2005.07.017
[40] Ottino, J. M., The kinematics of mixing: stretching, chaos, and transport, Cambridge Texts in Applied Mathematics, xiv+364 pp. (1989), Cambridge University Press, Cambridge · Zbl 0721.76015
[41] RHG99 D. Rothstein, E. Henry, and J. P. Gollub, Persistent patterns in transient chaotic fluid mixing, Nature 401 (1999), no. 6755, 770-772.
[42] Seis, Christian, Maximal mixing by incompressible fluid flows, Nonlinearity, 26, 12, 3279-3289 (2013) · Zbl 1396.76042 · doi:10.1088/0951-7715/26/12/3279
[43] taylor M. Taylor, Equivalence of Euclidean and toral Sobolev norms, Private communication, 2016.
[44] Triebel, Hans, Theory of function spaces, Monographs in Mathematics 78, 284 pp. (1983), Birkh\"{a}user Verlag, Basel · Zbl 1235.46002 · doi:10.1007/978-3-0346-0416-1
[45] Yao, Yao; Zlato\v{s}, Andrej, Mixing and un-mixing by incompressible flows, J. Eur. Math. Soc. (JEMS), 19, 7, 1911-1948 (2017) · Zbl 1369.35071 · doi:10.4171/JEMS/709
[46] zillinger C. Zillinger, On geometric and analytic mixing scales: Comparability and convergence rates for transport problems, 2018, preprint. arXiv:1804.11299. · Zbl 1427.76085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.