×

Topology optimization for incremental elastoplasticity: a phase-field approach. (English) Zbl 1455.74074


MSC:

74P15 Topological methods for optimization problems in solid mechanics
74P05 Compliance or weight optimization in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] L. Adam, J. Outrata, and T. Roubíček, Identification of some nonsmooth evolution systems with illustration on adhesive contacts at small strains, Optimization, 66 (2017), pp. 2025-2049. · Zbl 1379.35327
[2] G. Allaire, The homogenization method for topology and shape optimization, in Topology Optimization in Structural Mechanics, CISM Courses and Lectures 374, Springer, Vienna, 1997, pp. 101-133. · Zbl 0885.73049
[3] G. Allaire, Shape Optimization by the Homogenization Method. Appl. Math. Sci. 146. Springer-Verlag, New York, 2002. · Zbl 0990.35001
[4] G. Allaire, Topology optimization with the homogenization and the level-set methods, in Nonlinear Homogenization and Its Applications to Composites, Polycrystals and Smart Materials, NATO Sci. Ser. II Math. Phys. Chem. 170, Kluwer, Dordrecht, 2004, pp. 1-13. · Zbl 1320.74089
[5] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Oxford University Press, New York, 2000. · Zbl 0957.49001
[6] O. Amir, Stress-constrained continuum topology optimization: A new approach based on elasto-plasticity, Struct. Multidiscip. Optim., 55 (2017), pp. 1797-1818.
[7] M. P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71 (1988), pp. 197-224. · Zbl 0671.73065
[8] M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, Springer-Verlag, Berlin, 2003. · Zbl 1059.74001
[9] L. Blank, H. Garcke, M. H. Farshbaf-Shaker, and V. Styles, Relating phase field and sharp interface approaches to structural topology optimization, ESAIM Control Optim. Calc. Var., 20 (2014), pp. 1025-1058. · Zbl 1301.49113
[10] L. Blank, H. Garcke, C. Hecht, and C. Rupprecht, Sharp interface limit for a phase field model in structural optimization, SIAM J. Control Optim., 54 (2016), pp. 1558-1584. · Zbl 1348.35259
[11] B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization, ESAIM Control Optim. Calc. Var., 9 (2003), pp. 19-48. · Zbl 1066.49029
[12] M. Brokate and P. Krejčí, Optimal control of ODE systems involving a rate independent variational inequality, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), pp. 331-348. · Zbl 1260.49002
[13] M. Bruggi and P. Venini, A mixed FEM approach to stress-constrained topology optimization, Internat. J. Numer. Methods Engrg., 73 (2008), pp. 1693-1714. · Zbl 1159.74397
[14] M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints, SIAM J. Control Optim., 45 (2006), pp. 1447-1466. · Zbl 1116.74053
[15] M. Carrasco, B. Ivorra, and A. M. Ramos, Stochastic topology design optimization for continuous elastic materials, Comput. Methods Appl. Mech. Engrg., 289 (2015), pp. 131-154. · Zbl 1423.74727
[16] M. Carraturo, E. Rocca, E. Bonetti, D. Hömberg, A. Reali, and F. Auricchio, Graded-material design based on phase-field and topology optimization, Comput. Mech., 64 (2019), pp. 1589-1600. · Zbl 1462.74129
[17] G. Dal Maso, An Introduction to \(\Gamma \)-Convergence, Progr. Nonlinear Differential Equations Appl. 8, Birkhäuser Boston, Boston, MA, 1993. · Zbl 0816.49001
[18] J. C. de los Reyes, Optimization of mixed variational inequalities arising in flow of viscoplastic materials, Comput. Optim. Appl., 52 (2012), pp. 757-784. · Zbl 1258.49010
[19] J. C. de los Reyes, R. Herzog, and C. Meyer, Optimal control of static elastoplasticity in primal formulation, SIAM J. Control Optim., 54 (2016), pp. 3016-3039. · Zbl 1386.49029
[20] J. D. Deaton and R. V. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: Post 2000, Struct. Multidiscip. Optim., 49 (2014), pp. 1-38.
[21] M. Eleuteri and L. Lussardi, Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials, Evol. Equ. Control Theory, 3 (2014), pp. 411-427. · Zbl 1310.74012
[22] M. Eleuteri, L. Lussardi, and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), pp. 369-386. · Zbl 1352.74095
[23] J. Gao, Z. Luo, M. Xiao, L. Gao, and P. Li, A NURBS-based multi-material interpolation (N-MMI) for isogeometric topology optimization of structures, Appl. Math. Model., 81 (2020), pp. 818-843.
[24] K. Gröger, A \(W^{1,p}\)-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283 (1989), pp. 679-687. · Zbl 0646.35024
[25] W. Han and B. D. Reddy, Plasticity, Interdiscip. Appl. Math. 9, Springer, New York, 2013.
[26] J. Haslinger and P. Neittaanmäki, On the existence of optimal shapes in contact problems-perfectly plastic bodies, Comput. Mech., 1 (1986), pp. 293-299. · Zbl 0607.73106
[27] J. Haslinger, P. Neittaanmäki, and T. Tiihonen, Shape optimization in contact problems. 1. Design of an elastic body. 2. Design of an elastic perfectly plastic body, in Analysis and Optimization of Systems, Springer, New York, 1986, pp. 29-39. · Zbl 0595.49006
[28] R. Herzog and C. Meyer, Optimal control of static plasticity with linear kinematic hardening, ZAMM Z. Angew. Math. Mech., 91 (2011), pp. 777-794. · Zbl 1284.49026
[29] R. Herzog, C. Meyer, and G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions, J. Math. Anal. Appl., 382 (2011), pp. 802-813. · Zbl 1419.74125
[30] R. Herzog, C. Meyer, and G. Wachsmuth, C-stationarity for optimal control of static plasticity with linear kinematic hardening, SIAM J. Control Optim., 50 (2012), pp. 3052-3082. · Zbl 1321.49015
[31] I. Hlaváček, Shape optimization of elastoplastic bodies obeying Hencky’s law, Apl. Mat., 31 (1986), pp. 486-499. · Zbl 0616.73081
[32] I. Hlaváček, Shape optimization of an elastic-perfectly plastic body, Apl. Mat., 32 (1987), pp. 381-400. · Zbl 0632.73082
[33] I. Hlaváček, Shape optimization of elastoplastic axisymmetric bodies, Appl. Math., 36 (1991), pp. 469-491. · Zbl 0756.73094
[34] K. A. James and H. Waisman, Topology optimization of viscoelastic structures using a time-dependent adjoint method, Comput. Methods Appl. Mech. Engrg., 285 (2015), pp. 166-187. · Zbl 1423.74728
[35] S. Kaliszky, J. Logo, and T. Havady, Optimal design of elasto-plastic structures under various loading conditions and displacement constraints, Period. Polytech. Civil Engrg., 33 (1989), pp. 107-122.
[36] R. Karkauskas, Optimization of elastic-plastic geometrically non-linear lightweight structures under stiffness and stability constraints, J. Civil Engrg. Manag., 10 (2004), pp. 97-106.
[37] M. Khanzadi and M. Tavakkoli, Optimal plastic design of frames using evolutionary structural optimization, Int. J. Civil Engrg., 9 (2011), pp. 175-170.
[38] J. Lemaitre, J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, UK, 1990.
[39] L. Li, G. Zhang, and K. Khandelwal, Topology optimization of structures with gradient elastic material, Struct. Multidiscip. Optim., 56 (2017), pp. 371-390.
[40] J. Lin, Y. Guan, G. Zhao, H. Naceur, and P. Lu, Topology optimization of plane structures using smoothed particle hydrodynamics method, Internat. J. Numer. Methods Engrg., 110 (2017), pp. 726-744.
[41] J. Liu, K. Duke, and Y. Ma, Multi-material plastic part design via the level set shape and topology optimization method, Eng. Optim., 48 (2016), pp. 1910-1931.
[42] C. Lundgaard, J. Alexandersen, M. Zhou, C. S. Andreasen, and O. Sigmund, Revisiting density-based topology optimization for fluid-structure-interaction problems, Struct. Multidiscip. Optim., 58 (2018), pp. 969-995.
[43] A. Maury, G. Allaire, and F. Jouve, Elasto-plastic shape optimization using the level set method, SIAM J. Control Optim., 56 (2018), pp. 556-581. · Zbl 1387.35247
[44] K. Maute, S. Schwarz, and E. Ramm, Structural optimization-the interaction between form and mechanics, ZAMM Z. Angew. Math. Mech., 79 (1999), pp. 651-673. · Zbl 0943.74052
[45] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., 98 (1987), pp. 123-142. · Zbl 0616.76004
[46] L. Modica and S. Mortola, Un esempio di \(\Gamma^-\)-convergenza, Boll. Un. Mat. Ital. B (5), 14 (1977), pp. 285-299. · Zbl 0356.49008
[47] P. B. Nakshatrala and D. A. Tortorelli, Nonlinear structural design using multiscale topology optimization. Part II: Transient formulation, Comput. Methods Appl. Mech. Engrg., 304 (2016), pp. 605-618. · Zbl 1425.74377
[48] S. S. Nanthakumar, N. Valizadeh, H. S. Park, and T. Rabczuk, Surface effects on shape and topology optimization of nanostructures, Comput. Mech., 56 (2015), pp. 97-112. · Zbl 1329.74236
[49] C. B. W. Pedersen, Topology optimization of 2D-frame structures with path-dependent response, Internat. J. Numer. Methods Engrg., 57 (2003), pp. 1471-1501. · Zbl 1062.74591
[50] P. Penzler, M. Rumpf, and B. Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity, ESAIM Control Optim. Calc. Var., 18 (2012), pp. 229-258. · Zbl 1251.49054
[51] J. Petersson, Finite element analyses of topology optimization of elastic continua, in ENUMATH 97 (Heidelberg), World Scientific, River Edge, NJ, 1998, pp. 503-510. · Zbl 1075.74666
[52] V. Pištora, Shape optimization of an elasto-plastic body for the model with strain-hardening, Apl. Mat., 35 (1990), pp. 373-404. · Zbl 0717.73054
[53] F. Rindler, Optimal control for nonconvex rate-independent evolution processes, SIAM J. Control Optim., 47 (2008), pp. 2773-2794. · Zbl 1176.49005
[54] F. Rindler, Approximation of rate-independent optimal control problems, SIAM J. Numer. Anal., 47 (2009), pp. 3884-3909. · Zbl 1206.65173
[55] J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Interdiscip. Appl. Math. 7, Springer-Verlag, New York, 1998.
[56] J. Sokołowski and A. Żochowski, Optimality conditions for simultaneous topology and shape optimization, SIAM J. Control Optim., 42 (2003), pp. 1198-1221. · Zbl 1045.49028
[57] J. Sokołowski and J.-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer Ser. Comput. Math. 16, Springer-Verlag, Berlin, 1992. · Zbl 0761.73003
[58] U. Stefanelli, D. Wachsmuth, and G. Wachsmuth, Optimal control of a rate-independent evolution equation via viscous regularization, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), pp. 1467-1485. · Zbl 1369.49027
[59] P. M. Suquet, Un espace fonctionnel pour les équations de la plasticité, Ann. Fac. Sci. Toulouse Math., 1 (1979), pp. 77-87. · Zbl 0405.46027
[60] C. C. Swan and I. Kosaka, Voigt-Reuss topology optimization for structures with nonlinear material behaviors, Internat. J. Numer. Methods Engrg., 40 (1997), pp. 3785-3814. · Zbl 0908.73053
[61] R. Temam, Problèmes mathématiques en plasticité, Math. Methods Inform. Sci. 12, Gauthier-Villars, Paris, 1983. · Zbl 0547.73026
[62] N. Vermaak, G. Michailidis, G. Parry, R. Estevez, G. Allaire, and Y. Bréchet, Material interface effects on the topology optimization of multi-phase structures using a level set method, Struct. Multidiscip. Optim., 50 (2014), pp. 623-644.
[63] G. Wachsmuth, Optimal control of quasi-static plasticity with linear kinematic hardening, Part I: Existence and discretization in time, SIAM J. Control Optim., 50 (2012), pp. 2836-2861. · Zbl 1258.49008
[64] G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening II: Regularization and differentiability, Z. Anal. Anwend., 34 (2015), pp. 391-418. · Zbl 1342.49012
[65] G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening III: Optimality conditions, Z. Anal. Anwend., 35 (2016), pp. 81-118. · Zbl 1345.49029
[66] M. Wallin and M. Ristinmaa, Finite strain topology optimization based on phase-field regularization, Struct. Multidiscip. Optim., 51 (2015), pp. 305-317.
[67] W. Zhang, J. Yang, Y. Xu, and T. Gao, Topology optimization of thermoelastic structures: Mean compliance minimization or elastic strain energy minimization, Struct. Multidiscip. Optim., 49 (2014), pp. 417-429.
[68] X. Zhang and B. Zhu, Topology Optimization of Compliant Mechanisms, Springer, New York, 2018. · Zbl 1425.74008
[69] J.-H. Zhu, W.-H. Zhang, and L. Xia, Topology optimization in aircraft and aerospace structures design, Arch. Comput. Methods Eng., 23 (2016), pp. 595-622. · Zbl 1360.74128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.