×

zbMATH — the first resource for mathematics

Donaldson-Thomas invariants from tropical disks. (English) Zbl 1455.14103
Summary: We prove that the quantum DT-invariants associated to quivers with genteel potential can be expressed in terms of certain refined counts of tropical disks. This is based on a quantum version of Bridgeland’s description of cluster scattering diagrams in terms of stability conditions, plus a new version of the description of scattering diagrams in terms of tropical disk counts. The weights with which the tropical disks are counted are expressed in terms of motivic integrals of certain quiver flag varieties. We also show via explicit counterexample that Hall algebra broken lines do not result in consistent Hall algebra theta functions, i.e., they violate the extension of a lemma of Carl-Pumperla-Siebert from the classical setting.

MSC:
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
13F60 Cluster algebras
14T20 Geometric aspects of tropical varieties
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexandrov, S.; Pioline, B., Attractor flow trees, BPS indices and quivers, Adv. Theor. Math. Phys., 23, 3, 627-699 (2019)
[2] Block, F.; Göttsche, L., Refined curve counting with tropical geometry, Compos. Math., 152, 1, 115-151 (2016) · Zbl 1348.14125
[3] Bousseau, P.: The quantum tropical vertex. arXiv:1806.11495 · Zbl 07015696
[4] Bousseau, P., Tropical refined curve counting from higher genera and lambda classes, Invent. Math., 215, 1, 1-79 (2019) · Zbl 07015696
[5] Bridgeland, T., An introduction to motivic Hall algebras, Adv. Math., 229, 1, 102-138 (2012) · Zbl 1234.14011
[6] Bridgeland, T., Scattering diagrams, Hall algebras and stability conditions, Algebraic Geom., 4, 5, 523-561 (2017) · Zbl 1388.16013
[7] Cheung, M.: Tropical techniques in cluster theory and enumerative geometry. Ph.D. thesis, University of California, San Diego (2016)
[8] Cheung, M.: Theta functions and quiver Grassmannians. arXiv:1906.12299 (2019)
[9] Carl, M., Pumperla, M., Siebert, B.: A tropical view on Landau-Ginzburg models. Preprint (2011)
[10] Davison, B.: Refined invariants of finite-dimensional Jacobi algebras. arXiv:1903.00659
[11] Davison, B., Positivity for quantum cluster algebras, Ann. Math. (2), 187, 1, 157-219 (2018) · Zbl 1408.13055
[12] Denef, J., Loeser, F.: Geometry on arc spaces of algebraic varieties. In: European Congress of Mathematics, Vol. I (Barcelona, 2000). Progress in Mathematics, vol. 201, pp. 327-348. Birkhäuser, Basel (2001) · Zbl 1079.14003
[13] Davison, B., Mandel, T.: Strong positivity for quantum theta bases of quantum cluster algebras. arXiv:1910.12915
[14] Davison, B., Meinhardt, S.: Donaldson-Thomas theory for categories of homological dimension one with potential. arXiv:1512.08898 · Zbl 1430.14105
[15] Davison, B., Meinhardt, S.: Cohomological Donaldson-Thomas theory of a quiver with potential and quantum enveloping algebras. Invent. Math. (2020). 10.1007/s00222-020-00961-y · Zbl 07233319
[16] Derksen, H.; Weyman, J.; Zelevinsky, A., Quivers with potentials and their representations. I. Mutations, Sel. Math. (N.S.), 14, 1, 59-119 (2008) · Zbl 1204.16008
[17] Fock, V.; Goncharov, A., Cluster ensembles, quantization and the dilogarithm, Ann. Sci.Éc. Norm. Sup. (4), 42, 6, 865-930 (2009) · Zbl 1180.53081
[18] Faddeev, LD; Kashaev, RM, Quantum dilogarithm, Modern Phys. Lett. A, 9, 5, 427-434 (1994) · Zbl 0866.17010
[19] Filippini, SA; Stoppa, J., Block-Göttsche invariants from wall-crossing, Compos. Math., 151, 8, 1543-1567 (2015) · Zbl 1408.14179
[20] Fomin, S.; Zelevinsky, A., Cluster algebras. IV. Coefficients, Compos. Math., 143, 1, 112-164 (2007) · Zbl 1127.16023
[21] Gross, M.; Hacking, P.; Keel, S., Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes Études Sci., 122, 65-168 (2015) · Zbl 1351.14024
[22] Gross, M.; Hacking, P.; Keel, S.; Kontsevich, M., Canonical bases for cluster algebras, J. Am. Math. Soc., 31, 2, 497-608 (2018) · Zbl 1446.13015
[23] Gross, M., Hacking, P., Siebert, B.: Theta functions on varieties with effective anti-canonical class. Mem. Am. Math. Soc. https://www.ams.org/cgibin/mstrack/accepted_papers/memo. arXiv:1601.07081
[24] Gross, M.; Pandharipande, R., Quivers, curves, and the tropical vertex, Port. Math., 67, 2, 211-259 (2010) · Zbl 1227.14049
[25] Gross, M.; Pandharipande, R.; Siebert, B., The tropical vertex, Duke Math. J., 153, 2, 297-362 (2010) · Zbl 1205.14069
[26] Gross, M.; Siebert, B., From real affine geometry to complex geometry, Ann. Math. (2), 174, 3, 1301-1428 (2011) · Zbl 1266.53074
[27] Gross, M., Siebert, B.: Intrinsic mirror symmetry and punctured Gromov-Witten invariants. In: Algebraic Geometry: Salt Lake City 2015. Proceedings of Symposia in Pure Mathematics, vol. 97, pp. 199-230. American Mathematical Society, Providence, RI (2018)
[28] Joyce, D., Configurations in abelian categories. II. Ringel-Hall algebras, Adv. Math., 210, 2, 635-706 (2007) · Zbl 1119.14005
[29] Joyce, D., Song, Y.: A theory of generalized Donaldson-Thomas invariants. Mem. Am. Math. Soc. 217(1020), iv+199 (2012) · Zbl 1259.14054
[30] Keller, B.: On cluster theory and quantum dilogarithm identities. In: Representations of Algebras and Related Topics, EMS Series of Congress Reports, pp. 85-116. European Mathematical Society, Zürich (2011) · Zbl 1307.13028
[31] King, AD, Moduli of representations of finite-dimensional algebras, Q. J. Math. Oxf. Ser. (2), 45, 180, 515-530 (1994) · Zbl 0837.16005
[32] Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. arXiv:0811.2435 · Zbl 1248.14060
[33] Kontsevich, M., Soibelman, Y.: Affine structures and non-Archimedean analytic spaces. In: The Unity of Mathematics. Progress in Mathematics, vol. 244, pp. 321-385. Birkhäuser, Boston, MA (2006) · Zbl 1114.14027
[34] Kontsevich, M.; Soibelman, Y., Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys., 5, 2, 231-352 (2011) · Zbl 1248.14060
[35] Kontsevich, M., Soibelman, Y.: Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry. In: Homological Mirror Symmetry and Tropical Geometry. Lecture Notes of the Unione Matematica Italiana, vol. 15, pp. 197-308. Springer, Cham (2014) · Zbl 1326.14042
[36] Lin, Y.-S.: Correspondence theorem between holomorphic discs and tropical discs on K3 surfaces. arXiv:1703.00411
[37] Leung, N.C., Ma, Z., Young, M.B.: Refined scattering diagrams and theta functions from asymptotic analysis of Maurer-Cartan equations. Int. Math. Res. Not. IMRN (2019)
[38] Mandel, T.: Scattering diagrams, theta functions, and refined tropical curve counts. arXiv:1503.06183
[39] Mikhalkin, G., Quantum indices and refined enumeration of real plane curves, Acta Math., 219, 1, 135-180 (2017) · Zbl 06842752
[40] Mou, L.: Scattering diagrams of quivers with potentials and mutations. arXiv:1910.13714
[41] Manschot, J.; Pioline, B.; Sen, A., Wall crossing from Boltzmann black hole halos, J. High Energy Phys., 59, 7, 73 (2011) · Zbl 1298.81320
[42] Mandel, T., Ruddat, H.: Tropical quantum field theory, mirror polyvector fields, and multiplicities of tropical curves. arXiv:1902.07183 · Zbl 1442.14166
[43] Muller, G., The existence of a maximal green sequence is not invariant under quiver mutation, Electron. J. Combin., 23, 2, 23 (2016) · Zbl 1339.05163
[44] Nagao, K., Donaldson-Thomas theory and cluster algebras, Duke Math. J., 162, 7, 1313-1367 (2013) · Zbl 1375.14150
[45] Nishinou, T.; Siebert, B., Toric degenerations of toric varieties and tropical curves, Duke Math. J., 135, 1-51 (2006) · Zbl 1105.14073
[46] Qin, F.: Bases for upper cluster algebras and tropical points. arXiv:1902.09507
[47] Reineke, M., The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., 152, 2, 349-368 (2003) · Zbl 1043.17010
[48] Reineke, M., Poisson automorphisms and quiver moduli, J. Inst. Math. Jussieu, 9, 3, 653-667 (2010) · Zbl 1232.53072
[49] Saito, M., Mixed Hodge modules, Publ. Res. Inst. Math. Sci., 26, 2, 221-333 (1990) · Zbl 0727.14004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.